Modern Statistics with R
From wrangling and exploring data to inference and predictive modelling

Måns Thulin

2021-11-25 - Version 1.0.1
Contents

1 Introduction .. 17
 1.1 Welcome to R .. 17
 1.2 About this book 17

2 The basics .. 21
 2.1 Installing R and RStudio 21
 2.2 A first look at RStudio 22
 2.3 Running R code 24
 2.3.1 R scripts 25
 2.4 Variables and functions 26
 2.4.1 Storing data 26
 2.4.2 What’s in a name? 27
 2.4.3 Vectors and data frames 30
 2.4.4 Functions 33
 2.4.5 Mathematical operations 35
 2.5 Packages ... 36
 2.6 Descriptive statistics 38
 2.6.1 Numerical data 39
 2.6.2 Categorical data 41
 2.7 Plotting numerical data 42
 2.7.1 Our first plot 42
 2.7.2 Colours, shapes and axis labels 45
 2.7.3 Axis limits and scales 46
 2.7.4 Comparing groups 47
 2.7.5 Boxplots .. 48
 2.7.6 Histograms 50
 2.8 Plotting categorical data 52
 2.8.1 Bar charts 52
 2.9 Saving your plot 54
 2.10 Troubleshooting 55

3 Transforming, summarising, and analysing data 57
3.1 Data frames and data types ... 57
 3.1.1 Types and structures .. 57
 3.1.2 Types of tables ... 59
3.2 Vectors in data frames ... 61
 3.2.1 Accessing vectors and elements 61
 3.2.2 Use your dollars .. 63
 3.2.3 Using conditions .. 63
3.3 Importing data ... 66
 3.3.1 Importing csv files .. 67
 3.3.2 File paths .. 69
 3.3.3 Importing Excel files ... 70
3.4 Saving and exporting your data 72
 3.4.1 Exporting data .. 72
 3.4.2 Saving and loading R data 72
3.5 RStudio projects .. 73
3.6 Running a t-test ... 74
3.7 Fitting a linear regression model 74
3.8 Grouped summaries .. 76
3.9 Using %>% pipes ... 77
 3.9.1 *Ceci n’est pas une pipe* .. 78
 3.9.2 Aliases and placeholders 80
3.10 Flavours of R: base and tidyverse 81
3.11 Ethics and good statistical practice 82

4 Exploratory data analysis and unsupervised learning 85
 4.1 Reports with R Markdown ... 86
 4.1.1 A first example ... 86
 4.1.2 Formatting text .. 88
 4.1.3 Lists, tables, and images 89
 4.1.4 Code chunks .. 91
 4.2 Customising *ggplot2* plots 93
 4.2.1 Using themes .. 94
 4.2.2 Colour palettes ... 95
 4.2.3 Theme settings .. 96
 4.3 Exploring distributions ... 97
 4.3.1 Density plots and frequency polygons 97
 4.3.2 Asking questions ... 98
 4.3.3 Violin plots .. 101
 4.3.4 Combine multiple plots into a single graphic 101
 4.4 Outliers and missing data .. 102
 4.4.1 Detecting outliers .. 102
 4.4.2 Labelling outliers ... 104
 4.4.3 Missing data .. 105
 4.4.4 Exploring data ... 106
CONTENTS

4.5 Trends in scatterplots .. 106
4.6 Exploring time series 107
 4.6.1 Annotations and reference lines 108
 4.6.2 Longitudinal data .. 109
 4.6.3 Path plots .. 110
 4.6.4 Spaghetti plots ... 111
 4.6.5 Seasonal plots and decompositions 112
 4.6.6 Detecting changepoints 113
 4.6.7 Interactive time series plots 114
4.7 Using polar coordinates 114
 4.7.1 Visualising periodic data 115
 4.7.2 Pie charts .. 116
4.8 Visualising multiple variables 116
 4.8.1 Scatterplot matrices 116
 4.8.2 3D scatterplots ... 118
 4.8.3 Correlograms .. 118
 4.8.4 Adding more variables to scatterplots 119
 4.8.5 Overplotting .. 120
 4.8.6 Categorical data ... 122
 4.8.7 Putting it all together 123
4.9 Principal component analysis 124
4.10 Cluster analysis ... 127
 4.10.1 Hierarchical clustering 128
 4.10.2 Heatmaps and clustering variables 131
 4.10.3 Centroid-based clustering 132
 4.10.4 Fuzzy clustering 136
 4.10.5 Model-based clustering 137
 4.10.6 Comparing clusters 138
4.11 Exploratory factor analysis 139
 4.11.1 Factor analysis ... 139
 4.11.2 Latent class analysis 141

5 Dealing with messy data 147
 5.1 Changing data types .. 147
 5.2 Working with lists .. 149
 5.2.1 Splitting vectors into lists 150
 5.2.2 Collapsing lists into vectors 150
 5.3 Working with numbers 151
 5.3.1 Rounding numbers 151
 5.3.2 Sums and means in data frames 151
 5.3.3 Summaries of series of numbers 152
 5.3.4 Scientific notation 1e-03 153
 5.3.5 Floating point arithmetics 154
 5.4 Working with factors 156
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1</td>
<td>Creating factors</td>
<td>156</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Changing factor levels</td>
<td>157</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Changing the order of levels</td>
<td>158</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Combining levels</td>
<td>158</td>
</tr>
<tr>
<td>5.5</td>
<td>Working with strings</td>
<td>159</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Concatenating strings</td>
<td>160</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Changing case</td>
<td>161</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Finding patterns using regular expressions</td>
<td>161</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Substitution</td>
<td>166</td>
</tr>
<tr>
<td>5.5.5</td>
<td>Splitting strings</td>
<td>166</td>
</tr>
<tr>
<td>5.5.6</td>
<td>Variable names</td>
<td>167</td>
</tr>
<tr>
<td>5.6</td>
<td>Working with dates and times</td>
<td>168</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Date formats</td>
<td>168</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Plotting with dates</td>
<td>172</td>
</tr>
<tr>
<td>5.7</td>
<td>Data manipulation with <code>data.table</code>, <code>dplyr</code>, and <code>tidyr</code></td>
<td>173</td>
</tr>
<tr>
<td>5.7.1</td>
<td><code>data.table</code> and tidyverse syntax basics</td>
<td>174</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Modifying a variable</td>
<td>174</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Computing a new variable based on existing variables</td>
<td>175</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Renaming a variable</td>
<td>175</td>
</tr>
<tr>
<td>5.7.5</td>
<td>Removing a variable</td>
<td>175</td>
</tr>
<tr>
<td>5.7.6</td>
<td>Recoding <code>factor</code> levels</td>
<td>176</td>
</tr>
<tr>
<td>5.7.7</td>
<td>Grouped summaries</td>
<td>177</td>
</tr>
<tr>
<td>5.7.8</td>
<td>Filling in missing values</td>
<td>180</td>
</tr>
<tr>
<td>5.7.9</td>
<td>Chaining commands together</td>
<td>181</td>
</tr>
<tr>
<td>5.8</td>
<td>Filtering: select rows</td>
<td>181</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Filtering using row numbers</td>
<td>182</td>
</tr>
<tr>
<td>5.8.2</td>
<td>Filtering using conditions</td>
<td>182</td>
</tr>
<tr>
<td>5.8.3</td>
<td>Selecting rows at random</td>
<td>184</td>
</tr>
<tr>
<td>5.8.4</td>
<td>Using regular expressions to select rows</td>
<td>184</td>
</tr>
<tr>
<td>5.9</td>
<td>Subsetting: select columns</td>
<td>186</td>
</tr>
<tr>
<td>5.9.1</td>
<td>Selecting a single column</td>
<td>186</td>
</tr>
<tr>
<td>5.9.2</td>
<td>Selecting multiple columns</td>
<td>186</td>
</tr>
<tr>
<td>5.9.3</td>
<td>Using regular expressions to select columns</td>
<td>187</td>
</tr>
<tr>
<td>5.9.4</td>
<td>Subsetting using column numbers</td>
<td>188</td>
</tr>
<tr>
<td>5.10</td>
<td>Sorting</td>
<td>189</td>
</tr>
<tr>
<td>5.10.1</td>
<td>Changing the column order</td>
<td>189</td>
</tr>
<tr>
<td>5.10.2</td>
<td>Changing the row order</td>
<td>189</td>
</tr>
<tr>
<td>5.11</td>
<td>Reshaping data</td>
<td>190</td>
</tr>
<tr>
<td>5.11.1</td>
<td>From long to wide</td>
<td>191</td>
</tr>
<tr>
<td>5.11.2</td>
<td>From wide to long</td>
<td>191</td>
</tr>
<tr>
<td>5.11.3</td>
<td>Splitting columns</td>
<td>192</td>
</tr>
<tr>
<td>5.11.4</td>
<td>Merging columns</td>
<td>192</td>
</tr>
<tr>
<td>5.12</td>
<td>Merging data from multiple tables</td>
<td>193</td>
</tr>
<tr>
<td>5.12.1</td>
<td>Binds</td>
<td>194</td>
</tr>
</tbody>
</table>
CONTENTS

5.12.2 Merging tables using keys ... 196
5.12.3 Inner and outer joins ... 198
5.12.4 Semi-joins and anti-joins .. 199
5.13 Scraping data from websites .. 201
5.14 Other commons tasks .. 203
 5.14.1 Deleting variables ... 203
 5.14.2 Importing data from other statistical packages 204
 5.14.3 Importing data from databases 204
 5.14.4 Importing data from JSON files 204

6 R programming .. 207
 6.1 Functions .. 207
 6.1.1 Creating functions .. 208
 6.1.2 Local and global variables .. 209
 6.1.3 Will your function work? ... 211
 6.1.4 More on arguments .. 212
 6.1.5 Namespaces ... 213
 6.1.6 Sourcing other scripts .. 215
 6.2 More on pipes ... 215
 6.2.1 *Ce ne sont pas non plus des pipes* 215
 6.2.2 Writing functions with pipes .. 217
 6.3 Checking conditions ... 218
 6.3.1 *if* and *else* .. 218
 6.3.2 *&* & *&&* ... 219
 6.3.3 *ifelse* ... 220
 6.3.4 *switch* ... 221
 6.3.5 Failing gracefully ... 221
 6.4 Iteration using loops ... 223
 6.4.1 *for* loops ... 223
 6.4.2 Loops within loops ... 226
 6.4.3 Keeping track of what’s happening 227
 6.4.4 Loops and lists .. 228
 6.4.5 *while* loops .. 229
 6.5 Iteration using vectorisation and functionals 231
 6.5.1 A first example with *apply* .. 232
 6.5.2 Variations on a theme .. 233
 6.5.3 *purrr* .. 234
 6.5.4 Specialised functions .. 235
 6.5.5 Exploring data with functionals 236
 6.5.6 Keep calm and carry on .. 238
 6.5.7 Iterating over multiple variables 238
 6.6 Measuring code performance .. 240
 6.6.1 Timing functions ... 241
 6.6.2 Measuring memory usage - and a note on compilation 243
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Simulation and distributions</td>
<td>248</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Generating random numbers</td>
<td>248</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Some common distributions</td>
<td>249</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Assessing distributional assumptions</td>
<td>251</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Monte Carlo integration</td>
<td>254</td>
</tr>
<tr>
<td>7.2</td>
<td>Student’s t-test revisited</td>
<td>256</td>
</tr>
<tr>
<td>7.2.1</td>
<td>The old-school t-test</td>
<td>256</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Permutation tests</td>
<td>258</td>
</tr>
<tr>
<td>7.2.3</td>
<td>The bootstrap</td>
<td>261</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Saving the output</td>
<td>261</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Multiple testing</td>
<td>262</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Multivariate testing with Hotelling’s T^2</td>
<td>263</td>
</tr>
<tr>
<td>7.2.7</td>
<td>Sample size computations for the t-test</td>
<td>263</td>
</tr>
<tr>
<td>7.2.8</td>
<td>A Bayesian approach</td>
<td>265</td>
</tr>
<tr>
<td>7.3</td>
<td>Other common hypothesis tests and confidence intervals</td>
<td>266</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Nonparametric tests of location</td>
<td>266</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Tests for correlation</td>
<td>267</td>
</tr>
<tr>
<td>7.3.3</td>
<td>χ^2-tests</td>
<td>267</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Confidence intervals for proportions</td>
<td>268</td>
</tr>
<tr>
<td>7.4</td>
<td>Ethical issues in statistical inference</td>
<td>270</td>
</tr>
<tr>
<td>7.4.1</td>
<td>p-hacking and the file-drawer problem</td>
<td>270</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Reproducibility</td>
<td>272</td>
</tr>
<tr>
<td>7.5</td>
<td>Evaluating statistical methods using simulation</td>
<td>272</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Comparing estimators</td>
<td>272</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Type I error rate of hypothesis tests</td>
<td>275</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Power of hypothesis tests</td>
<td>277</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Power of some tests of location</td>
<td>279</td>
</tr>
<tr>
<td>7.5.5</td>
<td>Some advice on simulation studies</td>
<td>280</td>
</tr>
<tr>
<td>7.6</td>
<td>Sample size computations using simulation</td>
<td>281</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Writing your own simulation</td>
<td>281</td>
</tr>
<tr>
<td>7.6.2</td>
<td>The Wilcoxon-Mann-Whitney test</td>
<td>283</td>
</tr>
<tr>
<td>7.7</td>
<td>Bootstrapping</td>
<td>284</td>
</tr>
<tr>
<td>7.7.1</td>
<td>A general approach</td>
<td>284</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Bootstrap confidence intervals</td>
<td>286</td>
</tr>
<tr>
<td>7.7.3</td>
<td>Bootstrap hypothesis tests</td>
<td>288</td>
</tr>
<tr>
<td>7.7.4</td>
<td>The parametric bootstrap</td>
<td>290</td>
</tr>
<tr>
<td>7.8</td>
<td>Reporting statistical results</td>
<td>291</td>
</tr>
<tr>
<td>7.8.1</td>
<td>What should you include?</td>
<td>292</td>
</tr>
<tr>
<td>7.8.2</td>
<td>Citing R packages</td>
<td>293</td>
</tr>
<tr>
<td>8.1</td>
<td>Linear models</td>
<td>295</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Fitting linear models</td>
<td>295</td>
</tr>
<tr>
<td>Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1.2</td>
<td>Interactions and polynomial terms</td>
<td></td>
</tr>
<tr>
<td>8.1.3</td>
<td>Dummy variables</td>
<td></td>
</tr>
<tr>
<td>8.1.4</td>
<td>Model diagnostics</td>
<td></td>
</tr>
<tr>
<td>8.1.5</td>
<td>Transformations</td>
<td></td>
</tr>
<tr>
<td>8.1.6</td>
<td>Alternatives to \texttt{lm}</td>
<td></td>
</tr>
<tr>
<td>8.1.7</td>
<td>Bootstrap confidence intervals for regression coefficients</td>
<td></td>
</tr>
<tr>
<td>8.1.8</td>
<td>Alternative summaries with \texttt{broom}</td>
<td></td>
</tr>
<tr>
<td>8.1.9</td>
<td>Variable selection</td>
<td></td>
</tr>
<tr>
<td>8.1.10</td>
<td>Prediction</td>
<td></td>
</tr>
<tr>
<td>8.1.11</td>
<td>Prediction for multiple datasets</td>
<td></td>
</tr>
<tr>
<td>8.1.12</td>
<td>ANOVA</td>
<td></td>
</tr>
<tr>
<td>8.1.13</td>
<td>Bayesian estimation of linear models</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>Ethical issues in regression modelling</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>Generalised linear models</td>
<td></td>
</tr>
<tr>
<td>8.3.1</td>
<td>Modelling proportions: Logistic regression</td>
<td></td>
</tr>
<tr>
<td>8.3.2</td>
<td>Bootstrap confidence intervals</td>
<td></td>
</tr>
<tr>
<td>8.3.3</td>
<td>Model diagnostics</td>
<td></td>
</tr>
<tr>
<td>8.3.4</td>
<td>Prediction</td>
<td></td>
</tr>
<tr>
<td>8.3.5</td>
<td>Modelling count data</td>
<td></td>
</tr>
<tr>
<td>8.3.6</td>
<td>Modelling rates</td>
<td></td>
</tr>
<tr>
<td>8.3.7</td>
<td>Bayesian estimation of generalised linear models</td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>Mixed models</td>
<td></td>
</tr>
<tr>
<td>8.4.1</td>
<td>Fitting a linear mixed model</td>
<td></td>
</tr>
<tr>
<td>8.4.2</td>
<td>Model diagnostics</td>
<td></td>
</tr>
<tr>
<td>8.4.3</td>
<td>Bootstrapping</td>
<td></td>
</tr>
<tr>
<td>8.4.4</td>
<td>Nested random effects and multilevel/hierarchical models</td>
<td></td>
</tr>
<tr>
<td>8.4.5</td>
<td>ANOVA with random effects</td>
<td></td>
</tr>
<tr>
<td>8.4.6</td>
<td>Generalised linear mixed models</td>
<td></td>
</tr>
<tr>
<td>8.4.7</td>
<td>Bayesian estimation of mixed models</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>Survival analysis</td>
<td></td>
</tr>
<tr>
<td>8.5.1</td>
<td>Comparing groups</td>
<td></td>
</tr>
<tr>
<td>8.5.2</td>
<td>The Cox proportional hazards model</td>
<td></td>
</tr>
<tr>
<td>8.5.3</td>
<td>Accelerated failure time models</td>
<td></td>
</tr>
<tr>
<td>8.5.4</td>
<td>Bayesian survival analysis</td>
<td></td>
</tr>
<tr>
<td>8.5.5</td>
<td>Multivariate survival analysis</td>
<td></td>
</tr>
<tr>
<td>8.5.6</td>
<td>Power estimates for the logrank test</td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td>Left-censored data and nondetects</td>
<td></td>
</tr>
<tr>
<td>8.6.1</td>
<td>Estimation</td>
<td></td>
</tr>
<tr>
<td>8.6.2</td>
<td>Tests of means</td>
<td></td>
</tr>
<tr>
<td>8.6.3</td>
<td>Censored regression</td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>Creating matched samples</td>
<td></td>
</tr>
<tr>
<td>8.7.1</td>
<td>Propensity score matching</td>
<td></td>
</tr>
<tr>
<td>8.7.2</td>
<td>Stepwise matching</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

9 Predictive modelling and machine learning 355
 9.1 Evaluating predictive models 355
 9.1.1 Evaluating regression models 356
 9.1.2 Test-training splits 358
 9.1.3 Leave-one-out cross-validation and caret 359
 9.1.4 k-fold cross-validation 361
 9.1.5 Twinned observations 363
 9.1.6 Bootstrapping 364
 9.1.7 Evaluating classification models 364
 9.1.8 Visualising decision boundaries 368
 9.2 Ethical issues in predictive modelling 369
 9.3 Challenges in predictive modelling 371
 9.3.1 Handling class imbalance 371
 9.3.2 Assessing variable importance 373
 9.3.3 Extrapolation 374
 9.3.4 Missing data and imputation 375
 9.3.5 Endless waiting 376
 9.3.6 Overfitting to the test set 377
 9.4 Regularised regression models 378
 9.4.1 Ridge regression 379
 9.4.2 The lasso 381
 9.4.3 Elastic net 382
 9.4.4 Choosing the best model 383
 9.4.5 Regularised mixed models 385
 9.5 Machine learning models 387
 9.5.1 Decision trees 387
 9.5.2 Random forests 389
 9.5.3 Boosted trees 391
 9.5.4 Model trees 393
 9.5.5 Discriminant analysis 395
 9.5.6 Support vector machines 397
 9.5.7 Nearest neighbours classifiers 399
 9.6 Forecasting time series 400
 9.6.1 Decomposition 400
 9.6.2 Forecasting using ARIMA models 401
 9.7 Deploying models 403
 9.7.1 Creating APIs with plumber 403
 9.7.2 Different types of output 405

10 Advanced topics 407
 10.1 More on packages 407
 10.1.1 Loading and auto-installing packages 407
 10.1.2 Updating R and your packages 408
 10.1.3 Alternative repositories 408
CONTENTS

10.1.4 Removing packages .. 409
10.2 Speeding up computations with parallelisation 409
 10.2.1 Parallelising for loops ... 409
 10.2.2 Parallelising functionals ... 413
10.3 Linear algebra and matrices ... 414
 10.3.1 Creating matrices ... 414
 10.3.2 Sparse matrices ... 416
 10.3.3 Matrix operations ... 416
10.4 Integration with other programming languages 418
 10.4.1 Integration with C++ ... 418
 10.4.2 Integration with Python ... 418
 10.4.3 Integration with Tensorflow and PyTorch 419
 10.4.4 Integration with Spark ... 419

11 Debugging ... 421

11.1 Debugging ... 422
 11.1.1 Find out where the error occurred with traceback 422
 11.1.2 Interactive debugging of functions with debug 423
 11.1.3 Investigate the environment with recover 424
11.2 Common error messages .. 425
 11.2.1 + ... 425
 11.2.2 could not find function .. 425
 11.2.3 object not found ... 425
 11.2.4 cannot open the connection and No such file or directory 426
 11.2.5 invalid 'description' argument .. 426
 11.2.6 missing value where TRUE/FALSE needed 427
 11.2.7 unexpected '=' in ... 427
 11.2.8 attempt to apply non-function ... 428
 11.2.9 undefined columns selected .. 428
 11.2.10 subscript out of bounds ... 428
 11.2.11 Object of type ‘closure’ is not subsettable 429
 11.2.12 $ operator is invalid for atomic vectors 429
 11.2.13 (list) object cannot be coerced to type ‘double’ 429
 11.2.14 arguments imply differing number of rows 430
 11.2.15 non-numeric argument to a binary operator 430
 11.2.16 non-numeric argument to mathematical function 430
 11.2.17 cannot allocate vector of size ... 431
 11.2.18 Error in plot.new(): figure margins too large 431
 11.2.19 Error in .Call(graphics(C_palette2, .Call(C_palette2, NULL))): invalid graphics state 431
11.3 Common warning messages ... 431
 11.3.1 replacement has ... rows .. 431
11.3.2 the condition has length > 1 and only the first element will be used 432
11.3.3 number of items to replace is not a multiple of replacement length 432
11.3.4 longer object length is not a multiple of shorter object length 432
11.3.5 NAs introduced by coercion 433
11.3.6 package is not available (for R version 4.x.x) 433
11.4 Messages printed when installing ggplot2 434

12 Mathematical appendix 437
12.1 Bootstrap confidence intervals 437
12.2 The equivalence between confidence intervals and hypothesis tests 438
12.3 Two types of p-values 439
12.4 Deviance tests ... 442
12.5 Regularised regression 443

13 Solutions to exercises 445
Chapter 2 .. 445
Chapter 3 .. 452
Chapter 4 .. 460
Chapter 5 .. 479
Chapter 6 .. 494
Chapter 7 .. 506
Chapter 8 .. 519
Chapter 9 .. 539

Bibliography .. 567
Further reading .. 567
Online resources 568
References ... 568

Index .. 573

To cite this book, please use the following:

Chapter 1

Introduction

1.1 Welcome to R

Welcome to the wonderful world of R!

R is not like other statistical software packages. It is free, versatile, fast, and modern. It has a large and friendly community of users that help answer questions and develop new R tools. With more than 17,000 add-on packages available, R offers more functions for data analysis than any other statistical software. This includes specialised tools for disciplines as varied as political science, environmental chemistry, and astronomy, and new methods come to R long before they come to other programs. R makes it easy to construct reproducible analyses and workflows that allow you to easily repeat the same analysis more than once.

R is not like other programming languages. It was developed by statisticians as a tool for data analysis and not by software engineers as a tool for other programming tasks. It is designed from the ground up to handle data, and that shows. But it is also flexible enough to be used to create interactive web pages, automated reports, and APIs.

R is, simply put, currently the best tool there is for data analysis.

1.2 About this book

This book was born out of lecture notes and materials that I created for courses at the University of Edinburgh, Uppsala University, Dalarna University, the Swedish University of Agricultural Sciences, and Karolinska Institutet. It can be used as a textbook, for self-study, or as a reference manual for R. No background in programming is assumed.
CHAPTER 1. INTRODUCTION

This is not a book that has been written with the intention that you should read it back-to-back. Rather, it is intended to serve as a guide to what to do next as you explore R. Think of it as a conversation, where you and I discuss different topics related to data analysis and data wrangling. At times I’ll do the talking, introduce concepts and pose questions. At times you’ll do the talking, working with exercises and discovering all that R has to offer. The best way to learn R is to use R. You should strive for active learning, meaning that you should spend more time with R and less time stuck with your nose in a book. Together we will strive for an exploratory approach, where the text guides you to discoveries and the exercises challenge you to go further. This is how I’ve been teaching R since 2008, and I hope that it’s a way that you will find works well for you.

The book contains more than 200 exercises. Apart from a number of open-ended questions about ethical issues, all exercises involve R code. These exercises all have worked solutions. It is highly recommended that you actually work with all the exercises, as they are central to the approach to learning that this book seeks to support: using R to solve problems is a much better way to learn the language than to just read about how to use R to solve problems. Once you have finished an exercise (or attempted but failed to finish it) read the proposed solution - it may differ from what you came up with and will sometimes contain comments that you may find interesting. Treat the proposed solutions as a part of our conversation. As you work with the exercises and compare your solutions to those in the back of the book, you will gain more and more experience working with R and build your own library of examples of how problems can be solved.

Some books on R focus entirely on data science - data wrangling and exploratory data analysis - ignoring the many great tools R has to offer for deeper data analyses. Others focus on predictive modelling or classical statistics but ignore data-handling, which is a vital part of modern statistical work. Many introductory books on statistical methods put too little focus on recent advances in computational statistics and advocate methods that have become obsolete. Far too few books contain discussions of ethical issues in statistical practice. This book aims to cover all of these topics and show you the state-of-the-art tools for all these tasks. It covers data science and (modern!) classical statistics as well as predictive modelling and machine learning, and deals with important topics that rarely appear in other introductory texts, such as simulation. It is written for R 4.0 or later and will teach you powerful add-on packages like data.table, dplyr, ggplot2, and caret.

The book is organised as follows:

Chapter 2 covers basic concepts and shows how to use R to compute descriptive statistics and create nice-looking plots.

Chapter 3 is concerned with how to import and handle data in R, and how to perform routine statistical analyses.

Chapter 4 covers exploratory data analysis using statistical graphics, as well as un-
supervised learning techniques like principal components analysis and clustering. It also contains an introduction to R Markdown, a powerful markup language that can be used e.g. to create reports.

Chapter 5 describes how to deal with messy data - including filtering, rearranging and merging datasets - and different data types.

Chapter 6 deals with programming in R, and covers concepts such as iteration, conditional statements and functions.

Chapters 4-6 can be read in any order.

Chapter 7 is concerned with classical statistical topics like estimation, confidence intervals, hypothesis tests, and sample size computations. Frequentist methods are presented alongside Bayesian methods utilising weakly informative priors. It also covers simulation and important topics in computational statistics, such as the bootstrap and permutation tests.

Chapter 8 deals with various regression models, including linear, generalised linear and mixed models. Survival models and methods for analysing different kinds of censored data are also included, along with methods for creating matched samples.

Chapter 9 covers predictive modelling, including regularised regression, machine learning techniques, and an introduction to forecasting using time series models. Much focus is given to cross-validation and ways to evaluate the performance of predictive models.

Chapter 10 gives an overview of more advanced topics, including parallel computing, matrix computations, and integration with other programming languages.

Chapter 11 covers debugging, i.e. how to spot and fix errors in your code. It includes a list of more than 25 common error and warning messages, and advice on how to resolve them.

Chapter 12 covers some mathematical aspects of methods used in Chapters 7-9.

Finally, Chapter 13 contains fully worked solutions to all exercises in the book.

The datasets that are used for the examples and exercises can be downloaded from http://www.modernstatisticswithr.com/data.zip

I have opted not to put the datasets in an R package, because I want you to practice loading data from files, as this is what you’ll be doing whenever you use R for real work.

This book is available both in print and as an open access online book. The digital version of the book is offered under the Creative Commons CC BY-NC-SA 4.0 license, meaning that you are free to redistribute and build upon the material for non-commercial purposes, as long as appropriate credit is given to the author. The source

I am indebted to the numerous readers who have provided feedback on drafts of this book. My sincerest thanks go out to all of you. Any remaining misprints are, obviously, entirely my own fault.

Finally, there are countless packages and statistical methods that deserve a mention but aren’t included in the book. Like any author, I’ve had to draw the line somewhere. If you feel that something is missing, feel free to post an issue on the book’s GitHub page, and I’ll gladly consider it for future revisions.
Chapter 2

The basics

Let’s start from the very beginning. This chapter acts as an introduction to R. It will show you how to install and work with R and RStudio.

After working with the material in this chapter, you will be able to:

- Create reusable R scripts,
- Store data in R,
- Use functions in R to analyse data,
- Install add-on packages adding additional features to R,
- Compute descriptive statistics like the mean and the median,
- Do mathematical calculations,
- Create nice-looking plots, including scatterplots, boxplots, histograms and bar charts,
- Find errors in your code.

2.1 Installing R and RStudio

To download R, go to the R Project website

https://cran.r-project.org/mirrors.html

Choose a download mirror, i.e. a server to download the software from. I recommend choosing a mirror close to you. You can then choose to download R for either Linux\(^1\), Mac or Windows by following the corresponding links (Figure 2.1).

The version of R that you should download is called the (base) binary. Download and run it to install R. You may see mentions of 64-bit and 32-bit versions of R; if

\(^1\)For many Linux distributions, R is also available from the package management system.
you have a modern computer (which in this case means a computer from 2010 or later), you should go with the 64-bit version.

You have now installed the R programming language. Working with it is easier with an integrated development environment, or IDE for short, which allows you to easily write, run and debug your code. This book is written for use with the RStudio IDE, but 99.9 % of it will work equally well with other IDE’s, like Emacs with ESS or Jupyter notebooks.

To download RStudio, go to the RStudio download page

https://rstudio.com/products/rstudio/download/#download

Click on the link to download the installer for your operating system, and then run it.

2.2 A first look at RStudio

When you launch RStudio, you will see three or four panels:

1. The Environment panel, where a list of the data you have imported and created can be found.
2. The Files, Plots and Help panel, where you can see a list of available files, will be able to view graphs that you produce, and can find help documents for different parts of R.
3. The Console panel, used for running code. This is where we’ll start with the first few examples.
2.2. A FIRST LOOK AT RSTUDIO

Figure 2.2: The four RStudio panels.

4. The Script panel, used for writing code. This is where you’ll spend most of your time working.

If you launch RStudio by opening a file with R code, the Script panel will appear, otherwise it won’t. Don’t worry if you don’t see it at this point - you’ll learn how to open it soon enough.

The Console panel will contain R’s startup message, which shows information about which version of R you’re running:\footnote{In addition to the version number, each relase of R has a nickname referencing a Peanuts comic by Charles Schulz. The “Camp Pontanezen” nickname of R 4.1.0 is a reference to the Peanuts comic from February 12, 1986.}

\begin{verbatim}
R version 4.1.0 (2021-05-18) -- "Camp Pontanezen"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
\end{verbatim}
Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

You can resize the panels as you like, either by clicking and dragging their borders or using the minimise/maximise buttons in the upper right corner of each panel.

When you exit RStudio, you will be asked if you wish to save your workspace, meaning that the data that you’ve worked with will be stored so that it is available the next time you run R. That might sound like a good idea, but in general, I recommend that you don’t save your workspace, as that often turns out to cause problems down the line. It is almost invariably a much better idea to simply rerun the code you worked with in your next R session.

2.3 Running R code

Everything that we do in R revolves around code. The code will contain instructions for how the computer should treat, analyse and manipulate data. Thus each line of code tells R to do something: compute a mean value, create a plot, sort a dataset, or something else.

Throughout the text, there will be code chunks that you can paste into the Console panel. Here is the first example of such a code chunk. Type or copy the code into the Console and press Enter on your keyboard:

```
1+1
```

Code chunks will frequently contain multiple lines. You can select and copy both lines from the digital version of this book and simultaneously paste them directly into the Console:

```
2*2
1+2*3-5
```

As you can see, when you type the code into the Console panel and press Enter, R runs (or executes) the code and returns an answer. To get you started, the first exercise will have you write a line of code to perform a computation. You can find a solution to this and other exercises at the end of the book, in Chapter 13.

3The word manipulate has different meanings. Just to be perfectly clear: whenever I speak of manipulating data in this book, I will mean handling and transforming the data, not tampering with it.
Exercise 2.1. Use R to compute the product of the first ten integers: \(1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10\).

2.3.1 R scripts

When working in the Console panel\(^4\), you can use the up arrow ↑ on your keyboard to retrieve lines of code that you’ve previously used. There is however a much better way of working with R code: to put it in script files. These are files containing R code, that you can save and then run again whenever you like.

To create a new script file in RStudio, press Ctrl+Shift+N on your keyboard, or select File > New File > R Script in the menu. This will open a new Script panel (or a new tab in the Script panel, in case it was already open). You can then start writing your code in the Script panel. For instance, try the following:

```
1+1
2*2
1+2*3-5
(1+2)*3-5
```

In the Script panel, when you press Enter, you insert a new line instead of running the code. That’s because the Script panel is used for writing code rather than running it. To actually run the code, you must send it to the Console panel. This can be done in several ways. Let’s give them a try to see which you prefer.

To run the entire script do one of the following:

- Press the Source button in the upper right corner of the Script panel.
- Press Ctrl+Shift+Enter on your keyboard.
- Press Ctrl+Alt+Enter on your keyboard to run the code without printing the code and its output in the Console.

To run a part of the script, first select the lines you wish to run, e.g. by highlighting them using your mouse. Then do one of the following:

- Press the Run button at the upper right corner of the Script panel.
- Press Ctrl+Enter on your keyboard (this is how I usually do it!).

To save your script, click the Save icon, choose File > Save in the menu or press Ctrl+S. R script files should have the file extension .R, e.g. My first R script.R. Remember to save your work often, and to save your code for all the examples and exercises in this book - you will likely want to revisit old examples in the future, to see how something was done.

\(^4\)I.e. when the Console panel is active and you see a blinking text cursor in it.
2.4 Variables and functions

Of course, R is so much more than just a fancy calculator. To unlock its full potential, we need to discuss two key concepts: variables (used for storing data) and functions (used for doing things with the data).

2.4.1 Storing data

Without data, no data analytics. So how can we store and read data in R? The answer is that we use variables. A variable is a name used to store data, so that we can refer to a dataset when we write code. As the name variable implies, what is stored can change over time.

The code

\[x \leftarrow 4 \]

is used to assign the value 4 to the variable \(x \). It is read as “assign 4 to \(x \)”. The \(\leftarrow \) part is made by writing a less than sign (\(<\)) and a hyphen (\(-\)) with no space between them.

If we now type \(x \) in the Console, R will return the answer 4. Well, almost. In fact, R returns the following rather cryptic output:

\[\{1\} 4 \]

The meaning of the 4 is clear - it’s a 4. We’ll return to what the \(\{1\} \) part means soon.

Now that we’ve created a variable, called \(x \), and assigned a value (4) to it, \(x \) will have the value 4 whenever we use it again. This works just like a mathematical formula, where we for instance can insert the value \(x = 4 \) into the formula \(x + 1 \). The following two lines of code will compute \(x + 1 = 4 + 1 = 5 \) and \(x + x = 4 + 4 = 8 \):

\[
\begin{align*}
\text{x + 1} \\
\text{x + x}
\end{align*}
\]

Once we have assigned a value to \(x \), it will appear in the Environment panel in RStudio, where you can see both the variable’s name and its value.

The left-hand side of the assignment \(x \leftarrow 4 \) is always the name of a variable, but the right-hand side can be any piece of code that creates some sort of object to be stored in the variable. For instance, we could perform a computation on the right-hand side and then store the result in the variable:

5 If you are used to programming languages like C or Java, you should note that R is dynamically typed, meaning that the data type of an R variable also can change over time. This also means that there is no need to declare variable types in R (which is either liberating or terrifying, depending on what type of programmer you are).

6 In RStudio, you can also create the assignment operator \(\leftarrow \) by using the keyboard shortcut Alt+- (i.e. press Alt and the - button at the same time).
2.4. VARIABLES AND FUNCTIONS

\[
x \leftarrow 1 + 2 + 3 + 4
\]

R first evaluates the entire right-hand side, which in this case amounts to computing 1+2+3+4, and then assigns the result (10) to \(x\). Note that the value previously assigned to \(x\) (i.e. 4) now has been replaced by 10. After a piece of code has been run, the values of the variables affected by it will have changed. There is no way to revert the run and get that 4 back, save to rerun the code that generated it in the first place.

You’ll notice that in the code above, I’ve added some spaces, for instance between the numbers and the plus signs. This is simply to improve readability. The code works just as well without spaces:

\[
x \leftarrow 1 + 2 + 3 + 4
\]

or with spaces in some places but not in others:

\[
x \leftarrow 1 + 2 + 3 + 4
\]

However, you cannot place a space in the middle of the \(\leftarrow\) arrow. The following will not assign a value to \(x\):

\[
x \leftarrow 1 + 2 + 3 + 4
\]

Running that piece of code rendered the output \texttt{FALSE}. This is because \(\leftarrow\) with a space has a different meaning than \(\leftarrow\) in R, one that we shall return to in the next chapter.

In rare cases, you may want to switch the direction of the arrow, so that the variable names is on the right-hand side. This is called right-assignment and works just fine too:

\[
2 + 2 \rightarrow y
\]

Later on, we’ll see plenty of examples where right-assignment comes in handy.

\sim\sim\sim

\textbf{Exercise 2.2.} Do the following using R:

1. Compute the sum 924 + 124 and assign the result to a variable named \(a\).
2. Compute \(a \cdot a\).

2.4.2 What’s in a name?

You now know how to assign values to variables. But what should you call your variables? Of course, you can follow the examples in the previous section and give your variables names like \(x\), \(y\), \(a\) and \(b\). However, you don’t have to use single-letter
names, and for the sake of readability, it is often preferable to give your variables more informative names. Compare the following two code chunks:

```r
y <- 100
z <- 20
x <- y - z
```

and

```r
income <- 100
taxes <- 20
net_income <- income - taxes
```

Both chunks will run without any errors and yield the same results, and yet there is a huge difference between them. The first chunk is opaque - in no way does the code help us conceive what it actually computes. On the other hand, it is perfectly clear that the second chunk is used to compute a net income by subtracting taxes from income. You don’t want to be a chunk-one type R user, who produces impenetrable code with no clear purpose. You want to be a chunk-two type R user, who writes clear and readable code where the intent of each line is clear. Take it from me - for years I was a chunk-one guy. I managed to write a lot of useful code, but whenever I had to return to my old code to reuse it or fix some bug, I had difficulties understanding what each line was supposed to do. My new life as a chunk-two guy is better in every way.

So, what’s in a name? Shakespeare’s balcony-bound Juliet would have us believe that that which we call a rose by any other name would smell as sweet. Translated to R practice, this means that your code will run just fine no matter what names you choose for your variables. But when you or somebody else reads your code, it will help greatly if you call a rose a rose and not x or my_new_variable_5.

You should note that R is case-sensitive, meaning that my_variable, MY_VARIABLE, My_Variable, and mY_VariABle are treated as different variables. To access the data stored in a variable, you must use its exact name - including lower- and uppercase letters in the right places. Writing the wrong variable name is one of the most common errors in R programming.

You’ll frequently find yourself wanting to compose variable names out of multiple words, as we did with net_income. However, R does not allow spaces in variable names, and so net income would not be a valid variable name. There are a few different naming conventions that can be used to name your variables:

- **snake_case**, where words are separated by an underscore (_). Example: household_net_income.
- **camelCase** or CamelCase, where each new word starts with a capital letter. Example: householdNetIncome or HouseholdNetIncome.
- **period.case**, where each word is separated by a period (.). You’ll find this used a lot in R, but I’d advise that you don’t use it for naming variables, as a
2.4. VARIABLES AND FUNCTIONS

period in the middle of a name can have a different meaning in more advanced cases7. Example: \texttt{household.net.income}.

- \textbf{concatenatedwordscase}, where the words are concatenated using only lowercase letters. A downside to this convention is that it can make variable names very difficult to read. Use this at your own risk. Example: \texttt{householdnetincome}

- \textbf{SCREAMING_SNAKE_CASE}, which mainly is used in Unix shell scripts these days. You can use it in R if you like, although you will run the risk of making others think that you are either angry, super excited or stark staring mad8. Example: \texttt{HOUSEHOULD_NET_INCOME}.

Some characters, including spaces, -, +, *, ;, =, ! and $ are not allowed in variable names, as these all have other uses in R. The plus sign \texttt{+}, for instance, is used for addition (as you would expect), and allowing it to be used in variable names would therefore cause all sorts of confusion. In addition, variable names can’t start with numbers. Other than that, it is up to you how you name your variables and which convention you use. Remember, your variable will smell as sweet regardless of what name you give it, but using a good naming convention will improve readability9.

Another great way to improve the readability of your code is to use \textit{comments}. A comment is a piece of text, marked by \#, that is ignored by R. As such, it can be used to explain what is going on to people who read your code (including future you) and to add instructions for how to use the code. Comments can be placed on separate lines or at the end of a line of code. Here is an example:

```
#############################################################
# This lovely little code snippet can be used to compute #
# your net income. #
#############################################################

# Set income and taxes:
income <- 100  # Replace 100 with your income
taxes <- 20    # Replace 20 with how much taxes you pay

# Compute your net income:
net_income <- income - taxes
# Voilà!
```

In the Script panel in RStudio, you can comment and uncomment (i.e. remove the \# symbol) a row by pressing Ctrl+Shift+C on your keyboard. This is particularly useful if you wish to comment or uncomment several lines - simply select the lines and press Ctrl+Shift+C.

7Specifically, the period is used to separate methods and classes in object-oriented programming, which is hugely important in R (although you can use R for several years without realising this).

8I find myself using screaming snake case on occasion. Make of that what you will.

9I recommend \texttt{snake_case} or \texttt{camelCase}, just in case that wasn’t already clear.
Exercise 2.3. Answer the following questions:

1. What happens if you use an invalid character in a variable name? Try e.g. the following:

   ```r
   net income <- income - taxes
   net-income <- income - taxes
   cash <- income - taxes
   ```

2. What happens if you put R code as a comment? E.g.:

   ```r
   income <- 100
taxes <- 20
   net_income <- income - taxes
   # gross_income <- net_income + taxes
   ```

3. What happens if you remove a line break and replace it by a semicolon ;? E.g.:

   ```r
   income <- 200; taxes <- 30
   ```

4. What happens if you do two assignments on the same line? E.g.:

   ```r
   income2 <- taxes2 <- 100
   ```

2.4.3 Vectors and data frames

Almost invariably, you’ll deal with more than one figure at a time in your analyses. For instance, we may have a list of the ages of customers at a bookstore:

```
28, 48, 47, 71, 22, 80, 48, 30, 31
```

Of course, we could store each observation in a separate variable:

```
age_person_1 <- 28
age_person_2 <- 48
age_person_3 <- 47
# ... and so on
```

...but this quickly becomes awkward. A much better solution is to store the entire list in just one variable. In R, such a list is called a vector. We can create a vector using the following code, where `c` stands for combine:

```
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
```

The numbers in the vector are called elements. We can treat the vector variable `age` just as we treated variables containing a single number. The difference is that the
2.4. VARIABLES AND FUNCTIONS

Operations will apply to all elements in the list. So for instance, if we wish to express the ages in months rather than years, we can convert all ages to months using:

\[
\text{age_months <- age * 12}
\]

Most of the time, data will contain measurements of more than one quantity. In the case of our bookstore customers, we also have information about the amount of money they spent on their last purchase:

\[
20, 59, 2, 12, 22, 160, 34, 34, 29
\]

First, let’s store this data in a vector:

\[
\text{purchase <- c(20, 59, 2, 12, 22, 160, 34, 34, 29)}
\]

It would be nice to combine these two vectors into a table, like we would do in a spreadsheet software such as Excel. That would allow us to look at relationships between the two vectors - perhaps we could find some interesting patterns? In R, tables of vectors are called data frames. We can combine the two vectors into a data frame as follows:

\[
\text{bookstore <- data.frame(age, purchase)}
\]

If you type bookstore into the Console, it will show a simply formatted table with the values of the two vectors (and row numbers):

\[
\begin{array}{ccc}
\text{age} & \text{purchase} \\
1 & 28 & 20 \\
2 & 48 & 59 \\
3 & 47 & 2 \\
4 & 71 & 12 \\
5 & 22 & 22 \\
6 & 80 & 160 \\
7 & 48 & 34 \\
8 & 30 & 34 \\
9 & 31 & 29 \\
\end{array}
\]

A better way to look at the table may be to click on the variable name bookstore in the Environment panel, which will open the data frame in a spreadsheet format.

You will have noticed that R tends to print a [1] at the beginning of the line when we ask it to print the value of a variable:

\[
> \text{age}
\]

\[
[1] 28 48 47 71 22 80 48 30 31
\]

Why? Well, let’s see what happens if we print a longer vector:
When we enter data into a vector, we can put line breaks between # the commas:

```r
distances <- c(687, 5076, 7270, 967, 6364, 1683, 9394, 5712, 5206, 4317, 9411, 5625, 9725, 4977, 2730, 5648, 3818, 8241, 5547, 1637, 4428, 8584, 2962, 5729, 5325, 4370, 5989, 9030, 5532, 9623)
distances
```

Depending on the size of your Console panel, R will require a different number of rows to display the data in `distances`. The output will look something like this:

```r
> distances
[1]  687  5076  7270  967  6364  1683  9394  5712  5206  4317  9411  5625  9725
[14]  4977  2730  5648  3818  8241  5547  1637  4428  8584  2962  5729  5325  4370
[27]  5989  9030  5532  9623
```

or, if you have a narrower panel,

```r
> distances
[1]  687  5076  7270  967  6364  1683  9394
[ 8]  5712  5206  4317  9411  5625  9725  4977
[15]  2730  5648  3818  8241  5547  1637  4428
[22]  8584  2962  5729  5325  4370  5989  9030
[29]  5532  9623
```

The numbers within the square brackets - [1], [8], [15], and so on - tell us which elements of the vector that are printed first on each row. So in the latter example, the first element in the vector is 687, the 8th element is 5712, the 15th element is 2730, and so forth. Those numbers, called the indices of the elements, aren’t exactly part of your data, but as we’ll see later they are useful for keeping track of it.

This also tells you something about the inner workings of R. The fact that

```r
x <- 4
x
```

renders the output

```r
> x
[1] 4
```

tells us that x in fact is a vector, albeit with a single element. Almost everything in R is a vector, in one way or another.

Being able to put data on multiple lines when creating vectors is hugely useful, but can also cause problems if you forget to include the closing bracket). Try running the following code, where the final bracket is missing, in your Console panel:
distances <- c(687, 5076, 7270, 967, 6364, 1683, 9394, 5712, 5206, 4317, 9411, 5625, 9725, 4977, 2730, 5648, 3818, 8241, 5547, 1637, 4428, 8584, 2962, 5729, 5325, 4370, 5989, 9030, 5532, 9623)

When you hit Enter, a new line starting with a + sign appears. This indicates that R doesn’t think that your statement has finished. To finish it, type) in the Console and then press Enter.

Vectors and data frames are hugely important when working with data in R. Chapters 3 and 5 are devoted to how to work with these objects.

~

Exercise 2.4. Do the following:

1. Create two vectors, *height* and *weight*, containing the heights and weights of five fictional people (i.e. just make up some numbers!).

2. Combine your two vectors into a data frame.

You will use these vectors in Exercise 2.6.

Exercise 2.5. Try creating a vector using `x <- 1:5`. What happens? What happens if you use `5:1` instead? How can you use this notation to create the vector `(1, 2, 3, 4, 5, 4, 3, 2, 1)`?

2.4.4 Functions

You have some data. Great. But simply having data is not enough - you want to do something with it. Perhaps you want to draw a graph, compute a mean value or apply some advanced statistical model to it. To do so, you will use a function.

A function is a ready-made set of instructions - code - that tells R to do something. There are thousands of functions in R. Typically, you insert a variable into the function, and it returns an answer. The code for doing this follows the pattern `function_name(variable_name)`. As a first example, consider the function `mean`, which computes the mean of a variable:

```r
# Compute the mean age of bookstore customers
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
mean(age)
```

Note that the code follows the pattern `function_name(variable_name)`: the function’s name is `mean` and the variable’s name is `age`.
Some functions take more than one variable as input, and may also have additional arguments (or parameters) that you can use to control the behaviour of the function. One such example is `cor`, which computes the correlation between two variables:

```r
# Compute the correlation between the variables age and purchase
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
purchase <- c(20, 59, 2, 12, 22, 160, 34, 34, 29)
 cor(age, purchase)
```

The answer, 0.59, means that there appears to be a fairly strong positive correlation between age and the purchase size, which implies that older customers tend to spend more. On the other hand, just by looking at the data we can see that the oldest customer - aged 80 - spent much more than anybody else - 160 monetary units. It can happen that such outliers strongly influence the computation of the correlation. By default, `cor` uses the Pearson correlation formula, which is known to be sensitive to outliers. It is therefore of interest to also perform the computation using a formula that is more robust to outliers, such as the Spearman correlation. This can be done by passing an additional argument to `cor`, telling it which method to use for the computation:

```r
cor(age, purchase, method = "spearman")
```

The resulting correlation, 0.35, is substantially lower than the previous result. Perhaps the correlation isn’t all that strong after all.

So, how can we know what arguments to pass to a function? Luckily, we don’t have to memorise all possible arguments for all functions. Instead, we can look at the documentation, i.e. help file, for a function that we are interested in. This is done by typing `?function_name` in the Console panel, or doing a web search for R `function_name`. To view the documentation for the `cor` function, type:

`?cor`

The documentation for R functions all follow the same pattern:

- **Description**: a short (and sometimes quite technical) description of what the function does.
- **Usage**: an abstract example of how the function is used in R code.
- **Arguments**: a list and description of the input arguments for the function.
- **Details**: further details about how the function works.
- **Value**: information about the output from the function.
- **Note**: additional comments from the function’s author (not always included).
- **References**: references to papers or books related to the function (not always included).
- **See Also**: a list of related functions.
- **Examples**: practical (and sometimes less practical) examples of how to use the function.
The first time that you look at the documentation for an R function, all this information can be a bit overwhelming. Perhaps even more so for cor, which is a bit unusual in that it shares its documentation page with three other (heavily related) functions: var, cov and cov2cor. Let the section headlines guide you when you look at the documentation. What information are you looking for? If you’re just looking for an example of how the function is used, scroll down to Examples. If you want to know what arguments are available, have a look at Usage and Arguments.

Finally, there are a few functions that don’t require any input at all, because they don’t do anything with your variables. One such example is Sys.time() which prints the current time on your system:

```r
Sys.time()
```

Note that even though Sys.time doesn’t require any input, you still have to write the parentheses (), which tells R that you want to run a function.

Exercise 2.6. Using the data you created in Exercise 2.4, do the following:

1. Compute the mean height of the people.
2. Compute the correlation between height and weight.

Exercise 2.7. Do the following:

1. Read the documentation for the function length. What does it do? Apply it to your height vector.
2. Read the documentation for the function sort. What does it do? What does the argument decreasing (the values of which can be either FALSE or TRUE) do? Apply the function to your weight vector.

2.4.5 Mathematical operations

To perform addition, subtraction, multiplication and division in R, we can use the standard symbols +, -, *, /. As in mathematics, expressions within parentheses are evaluated first, and multiplication is performed before addition. So \(1 + 2 \cdot (8/2) \) is
\[
1 + 2 \cdot (8/2) = 1 + 2 \cdot 4 = 1 + 8 = 9.
\]

In addition to these basic arithmetic operators, R has a number of mathematical functions that you can apply to your variables, including square roots, logarithms and trigonometric functions. Below is an incomplete list, showing the syntax for using the functions on a variable \(x \). Throughout, \(a \) is supposed to be a number.

- \(\text{abs}(x) \): computes the absolute value \(|x| \).
- \(\text{sqrt}(x) \): computes \(\sqrt{x} \).
• log(x): computes the logarithm of x with the natural number e as the base.
• log(x, base = a): computes the logarithm of x with the number a as the base.
• a^x: computes a^x.
• sin(x): computes $\sin(x)$.
• exp(x): computes e^x.
• sum(x): when x is a vector $x = (x_1, x_2, x_3, \ldots, x_n)$, computes the sum of the elements of x: $\sum_{i=1}^{n} x_i$.
• prod(x): when x is a vector $x = (x_1, x_2, x_3, \ldots, x_n)$, computes the product of the elements of x: $\prod_{i=1}^{n} x_i$.
• pi: a built-in variable with value π, the ratio of the circumference of a circle to its diameter.
• x %% a: computes x modulo a.
• factorial(x): computes $x!$.
• choose(n,k): computes $\left(\begin{array}{c} n \\ k \end{array}\right)$.

Exercise 2.8. Compute the following:

1. $\sqrt{\pi}$
2. $e^2 \cdot \log(4)$

Exercise 2.9. R will return non-numerical answers if you try to perform computations where the answer is infinite or undefined. Try the following to see some possible results:

1. Compute 1/0.
2. Compute 0/0.
3. Compute $\sqrt{-1}$.

2.5 Packages

R comes with a ton of functions, but of course these cannot cover all possible things that you may want to do with your data. That’s where packages come in. Packages are collections of functions and datasets that add new features to R. Do you want to apply some obscure statistical test to your data? Plot your data on a map? Run C++ code in R? Speed up some part of your data handling process? There are R packages for that. In fact, with more than 17,000 packages and counting, there are R packages for just about anything that you could possibly want to do. All packages have been contributed by the R community - that is, by users like you and me.
Most R packages are available from CRAN, the official R repository - a network of servers (so-called mirrors) around the world. Packages on CRAN are checked before they are published, to make sure that they do what they are supposed to do and don’t contain malicious components. Downloading packages from CRAN is therefore generally considered to be safe.

In the rest of this chapter, we’ll make use of a package called ggplot2, which adds additional graphical features to R. To install the package from CRAN, you can either select Tools > Install packages in the RStudio menu and then write ggplot2 in the text box in the pop-up window that appears, or use the following line of code:

```r
install.packages("ggplot2")
```

A menu may appear where you are asked to select the location of the CRAN mirror to download from. Pick the one the closest to you, or just use the default option - your choice can affect the download speed, but will in most cases not make much difference. There may also be a message asking whether to create a folder for your packages, which you should agree to do.

As R downloads and installs the packages, a number of technical messages are printed in the Console panel (an example of what these messages can look like during a successful installation is found in Section 11.4). ggplot2 depends on a number of packages that R will install for you, so expect this to take a few minutes. If the installation finishes successfully, it will finish with a message saying:

```r
* DONE (ggplot2)
```

Or, on some systems,

```r
package ‘ggplot2’ successfully unpacked and MD5 sums checked
```

If the installation fails for some reason, there will usually be a (sometimes cryptic) error message. You can read more about troubleshooting errors in Section 2.10. There is also a list of common problems when installing packages available on the RStudio support page at https://support.rstudio.com/hc/en-us/articles/200554786-Problem-Installing-Packages.

After you’ve installed the package, you’re still not finished quite yet. The package may have been installed, but its functions and datasets won’t be available until you load it. This is something that you need to do each time that you start a new R session. Luckily, it is done with a single short line of code using the library function\(^ {10}\), that I recommend putting at the top of your script file:

```r
library(ggplot2)
```

\(^{10}\)The use of library causes people to erroneously refer to R packages as libraries. Think of the library as the place where you store your packages, and calling library means that you go to your library to fetch the package.
We’ll discuss more details about installing and updating R packages in Section 10.1.

2.6 Descriptive statistics

In the remainder of this chapter, we will study two datasets that are shipped with the ggplot2 package:

- **diamonds**: describing the prices of more than 50,000 cut diamonds.
- **msleep**: describing the sleep times of 83 mammals.

These, as well as some other datasets, are automatically loaded as data frames when you load ggplot2:

```r
library(ggplot2)
```

To begin with, let’s explore the msleep dataset. To have a first look at it, type the following in the Console panel:

```r
msleep
```

That shows you the first 10 rows of the data, and some of its columns. It also gives another important piece of information: 83 x 11, meaning that the dataset has 83 rows (i.e. 83 observations) and 11 columns (with each column corresponding to a variable in the dataset).

There are however better methods for looking at the data. To view all 83 rows and all 11 variables, use:

```r
View(msleep)
```

You’ll notice that some cells have the value NA instead of a proper value. NA stands for Not Available, and is a placeholder used by R to point out missing data. In this case, it means that the value is unknown for the animal.

To find information about the data frame containing the data, some useful functions are:

```r
head(msleep)
tail(msleep)
dim(msleep)
str(msleep)
names(msleep)
```

`dim` returns the numbers of rows and columns of the data frame, whereas `str` returns information about the 11 variables. Of particular importance are the data types of the variables (chr and num, in this instance), which tells us what kind of data we are dealing with (numerical, categorical, dates, or something else). We’ll delve deeper
into data types in Chapter 3. Finally, names returns a vector containing the names of the variables.

Like functions, datasets that come with packages have documentation describing them. The documentation for msleep gives a short description of the data and its variables. Read it to learn a bit more about the variables:

?msleep

Finally, you’ll notice that msleep isn’t listed among the variables in the Environment panel in RStudio. To include it there, you can run:

data(msleep)

2.6.1 Numerical data

Now that we know what each variable represents, it’s time to compute some statistics. A convenient way to get some descriptive statistics giving a summary of each variable is to use the summary function:

summary(msleep)

For the text variables, this doesn’t provide any information at the moment. But for the numerical variables, it provides a lot of useful information. For the variable sleep_rem, for instance, we have the following:

<table>
<thead>
<tr>
<th>sleep_rem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. : 0.100</td>
</tr>
<tr>
<td>1st Qu.: 0.900</td>
</tr>
<tr>
<td>Median : 1.500</td>
</tr>
<tr>
<td>Mean : 1.875</td>
</tr>
<tr>
<td>3rd Qu.: 2.400</td>
</tr>
<tr>
<td>Max. : 6.600</td>
</tr>
<tr>
<td>NA’s : 22</td>
</tr>
</tbody>
</table>

This tells us that the mean of sleep_rem is 1.875, that smallest value is 0.100 and that the largest is 6.600. The 1st quartile\(^\text{13}\) is 0.900, the median is 1.500 and the third quartile is 2.400. Finally, there are 22 animals for which there are no values (missing data - represented by NA).

Sometimes we want to compute just one of these, and other times we may want to compute summary statistics not included in summary. Let’s say that we want to compute some descriptive statistics for the sleep_total variable. To access a vector inside a data frame, we use a dollar sign: data_frame_name$vector_name. So to access the sleep_total vector in the msleep data frame, we write:

\(^{13}\)The first quartile is a value such that 25 % of the observations are smaller than it; the 3rd quartile is a value such that 25 % of the observations are larger than it.
Some examples of functions that can be used to compute descriptive statistics for this vector are:

- `mean(msleep$sleep_total)` # Mean
- `median(msleep$sleep_total)` # Median
- `max(msleep$sleep_total)` # Max
- `min(msleep$sleep_total)` # Min
- `sd(msleep$sleep_total)` # Standard deviation
- `var(msleep$sleep_total)` # Variance
- `quantile(msleep$sleep_total)` # Various quantiles

To see how many animals sleep for more than 8 hours a day, we can use the following:

- `sum(msleep$sleep_total > 8)` # Frequency (count)
- `mean(msleep$sleep_total > 8)` # Relative frequency (proportion)

`msleep$sleep_total > 8` checks whether the total sleep time of each animal is greater than 8. We’ll return to expressions like this in Section 3.2.

Now, let’s try to compute the mean value for the length of REM sleep for the animals:

- `mean(msleep$sleep_rem)`

The above call returns the answer `NA`. The reason is that there are `NA` values in the `sleep_rem` vector (22 of them, as we saw before). What we actually wanted was the mean value among the animals for which we know the REM sleep. We can have a look at the documentation for `mean` to see if there is some way we can get this:

- `?mean`

The argument `na.rm` looks promising - it is “a logical value indicating whether NA values should be stripped before the computation proceeds”. In other words, it tells R whether or not to ignore the `NA` values when computing the mean. In order to ignore `NA`s in the computation, we set `na.rm = TRUE` in the function call:

- `mean(msleep$sleep_rem, na.rm = TRUE)`

Note that the `NA` values have not been removed from `msleep`. Setting `na.rm = TRUE` simply tells R to ignore them in a particular computation, not to delete them.

We run into the same problem if we try to compute the correlation between `sleep_total` and `sleep_rem`:

- `cor(msleep$sleep_total, msleep$sleep_rem)`

A quick look at the documentation (`?cor`), tells us that the argument used to ignore `NA` values has a different name for `cor` - it’s not `na.rm` but `use`. The reason will
become evident later on, when we study more than two variables at a time. For now, we set use = "complete.obs" to compute the correlation using only observations with complete data (i.e. no missing values):

```r
cor(msleep$sleep_total, msleep$sleep_rem, use = "complete.obs")
```

2.6.2 Categorical data

Some of the variables, like vore (feeding behaviour) and conservation (conservation status) are categorical rather than numerical. It therefore makes no sense to compute means or largest values. For categorical variables (often called factors in R), we can instead create a table showing the frequencies of different categories using `table`:

```r
table(msleep$vore)
```

To instead show the proportion of different categories, we can apply `proportions` to the table that we just created:

```r
proportions(table(msleep$vore))
```

The `table` function can also be used to construct a cross table that shows the counts for different combinations of two categorical variables:

```r
# Counts:
table(msleep$vore, msleep$conservation)

# Proportions, per row:
proportions(table(msleep$vore, msleep$conservation), margin = 1)

# Proportions, per column:
proportions(table(msleep$vore, msleep$conservation), margin = 2)
```

Exercise 2.10. Load `ggplot2` using `library(ggplot2)` if you have not already done so. Then do the following:

1. View the documentation for the `diamonds` data and read about different the variables.
2. Check the data structures: how many observations and variables are there and what type of variables (numeric, categorical, etc.) are there?
3. Compute summary statistics (means, median, min, max, counts for categorical variables). Are there any missing values?
2.7 Plotting numerical data

There are several different approaches to creating plots with R. In this book, we will mainly focus on creating plots using the `ggplot2` package, which allows us to create good-looking plots using the so-called *grammar of graphics*. The grammar of graphics is a set of structural rules that helps us establish a language for graphics. The beauty of this is that (almost) all plots will be created with functions that all follow the same logic, or grammar. That way, we don’t have to learn new arguments for each new plot. You can compare this to the problems we encountered when we wanted to ignore `NA` values when computing descriptive statistics - `mean` required the argument `na.rm` whereas `cor` required the argument `use`. By using a common grammar for all plots, we reduce the number of arguments that we need to learn.

The three key components to grammar of graphics plots are:

- **Data**: the observations in your dataset,
- **Aesthetics**: mappings from the data to visual properties (like axes and sizes of geometric objects), and
- **Geoms**: geometric objects, e.g. lines, representing what you see in the plot.

When we create plots using `ggplot2`, we must define what data, aesthetics and geoms to use. If that sounds a bit strange, it will hopefully become a lot clearer once we have a look at some examples. To begin with, we will illustrate how this works by visualising some continuous variables in the `msleep` data.

2.7.1 Our first plot

As a first example, let’s make a scatterplot by plotting the total sleep time of an animal against the REM sleep time of an animal.

Using base R, we simply do a call to the `plot` function in a way that is analogous to how we’d use e.g. `cor`:

```r
plot(msleep$sleep_total, msleep$sleep_rem)
```

The code for doing this using `ggplot2` is more verbose:

```r
library(ggplot2)
ggplot(msleep, aes(x = sleep_total, y = sleep_rem)) + geom_point()
```

The code consists of three parts:

- **Data**: given by the first argument in the call to `ggplot`: `msleep`
- **Aesthetics**: given by the second argument in the `ggplot` call: `aes`, where we map `sleep_total` to the x-axis and `sleep_rem` to the y-axis.
- **Geoms**: given by `geom_point`, meaning that the observations will be represented by points.
Figure 2.3: A scatterplot of mammal sleeping times.
At this point you may ask why on earth anyone would ever want to use \texttt{ggplot2} code for creating plots. It’s a valid question. The base R code looks simpler, and is consistent with other functions that we’ve seen. The \texttt{ggplot2} code looks... different. This is because it uses the \textit{grammar of graphics}, which in many ways is a language of its own, different from how we otherwise work with R.

But, the plot created using \texttt{ggplot2} also looked different. It used filled circles instead of empty circles for plotting the points, and had a grid in the background. In both base R graphics and \texttt{ggplot2} we can changes these settings, and many others. We can create something similar to the \texttt{ggplot2} plot using base R as follows, using the \texttt{pch} argument and the \texttt{grid} function:

\begin{verbatim}
plot(msleep$sleep_total, msleep$sleep_rem, pch = 16)
grid()
\end{verbatim}

Some people prefer the look and syntax of base R plots, while others argue that \texttt{ggplot2} graphics has a prettier default look. I can sympathise with both groups. Some types of plots are easier to create using base R, and some are easier to create using \texttt{ggplot2}. I like base R graphics for their simplicity, and prefer them for quick-and-dirty visualisations as well as for more elaborate graphs where I want to combine many different components. For everything in between, including exploratory data analysis where graphics are used to explore and understand datasets, I prefer \texttt{ggplot2}. In this book, we’ll use base graphics for some quick-and-dirty plots, but put more emphasis on \texttt{ggplot2} and how it can be used to explore data.

The syntax used to create the \texttt{ggplot2} scatterplot was in essence \texttt{ggplot(data, aes)} + \texttt{geom}. All plots created using \texttt{ggplot2} follow this pattern, regardless of whether they are scatterplots, bar charts or something else. The plus sign in \texttt{ggplot(data, aes) + geom} is important, as it implies that we can add more geoms to the plot, for instance a trend line, and perhaps other things as well. We will return to that shortly.

Unless the user specifies otherwise, the first two arguments to \texttt{aes} will always be mapped to the \texttt{x} and \texttt{y} axes, meaning that we can simplify the code above by removing the \texttt{x =} and \texttt{y =} bits (at the cost of a slight reduction in readability). Moreover, it is considered good style to insert a line break after the + sign. The resulting code is:

\begin{verbatim}
ggplot(msleep, aes(sleep_total, sleep_rem)) +
 geom_point()
\end{verbatim}

Note that this does not change the plot in any way - the difference is merely in the style of the code.
Exercise 2.11. Create a scatterplot with total sleeping time along the x-axis and time awake along the y-axis (using the `msleep` data). What pattern do you see? Can you explain it?

2.7.2 Colours, shapes and axis labels

You now know how to make scatterplots, but if you plan to show your plot to someone else, there are probably a few changes that you’d like to make. For instance, it’s usually a good idea to change the label for the x-axis from the variable name “sleep_total” to something like “Total sleep time (h)”. This is done by using the + sign again, adding a call to `xlab` to the plot:

```r
ggplot(msleep, aes(sleep_total, sleep_rem)) +
  geom_point() +
  xlab("Total sleep time (h)")
```

Note that the plus signs must be placed at the end of a row rather than at the beginning. To change the y-axis label, add `ylab` instead.

To change the colour of the points, you can set the colour in `geom_point`:

```r
ggplot(msleep, aes(sleep_total, sleep_rem)) +
  geom_point(colour = "red") +
  xlab("Total sleep time (h)")
```

In addition to "red", there are a few more colours that you can choose from. You can run `colors()` in the Console to see a list of the 657 colours that have names in R (examples of which include "papayawhip", "blanchedalmond", and "cornsilk4"), or use colour hex codes like "#FF5733".

Alternatively, you may want to use the colours of the point to separate different categories. This is done by adding a `colour` argument to `aes`, since you are now mapping a data variable to a visual property. For instance, we can use the variable `vore` to show differences between herbivores, carnivores and omnivores:

```r
ggplot(msleep, aes(sleep_total, sleep_rem, colour = vore)) +
  geom_point() +
  xlab("Total sleep time (h)")
```

What happens if we use a continuous variable, such as the sleep cycle length `sleep_cycle` to set the colour?

```r
ggplot(msleep, aes(sleep_total, sleep_rem, colour = sleep_cycle)) +
  geom_point() +
  xlab("Total sleep time (h)")
```

You’ll learn more about customising colours (and other parts) of your plots in Section 4.2.
Exercise 2.12. Using the diamonds data, do the following:

1. Create a scatterplot with carat along the x-axis and price along the y-axis. Change the x-axis label to read “Weight of the diamond (carat)” and the y-axis label to “Price (USD)”. Use cut to set the colour of the points.

2. Try adding the argument \texttt{alpha = 1} to \texttt{geom_point}, i.e. \texttt{geom_point(alpha = 1)}. Does anything happen? Try changing the 1 to 0.5 and 0.25 and see how that affects the plot.

Exercise 2.13. Similar to how you changed the colour of the points, you can also change their size and shape. The arguments for this are called \texttt{size} and \texttt{shape}.

1. Change the scatterplot from Exercise 2.12 so that diamonds with different cut qualities are represented by different shapes.

2. Then change it so that the size of each point is determined by the diamond’s length, i.e. the variable \texttt{x}.

2.7.3 Axis limits and scales

Next, assume that we wish to study the relationship between animals’ brain sizes and their total sleep time. We create a scatterplot using:

\begin{verbatim}
ggplot(msleep, aes(brainwt, sleep_total, colour = vore)) + geom_point() + xlab("Brain weight") + ylab("Total sleep time")
\end{verbatim}

There are two animals with brains that are much heavier than the rest (African elephant and Asian elephant). These outliers distort the plot, making it difficult to spot any patterns. We can try changing the x-axis to only go from 0 to 1.5 by adding \texttt{xlim} to the plot, to see if that improves it:

\begin{verbatim}
ggplot(msleep, aes(brainwt, sleep_total, colour = vore)) + geom_point() + xlab("Brain weight") + ylab("Total sleep time") + xlim(0, 1.5)
\end{verbatim}

This is slightly better, but we still have a lot of points clustered near the y-axis, and some animals are now missing from the plot. If instead we wished to change the limits of the y-axis, we would have used \texttt{ylim} in the same fashion.
Another option is to rescale the x-axis by applying a log transform to the brain weights, which we can do directly in `aes`:

\[
\text{ggplot} (\text{msleep, aes(log(brainwt), sleep_total, colour = vore))} + \\
\text{geom_point()} + \\
\text{xlab("log(Brain weight)")} + \\
\text{ylab("Total sleep time")}
\]

This is a better-looking scatterplot, with a weak declining trend. We didn’t have to remove the outliers (the elephants) to create it, which is good. The downside is that the x-axis now has become difficult to interpret. A third option that mitigates this is to add `scale_x_log10` to the plot, which changes the scale of the x-axis to a log10 scale (which increases interpretability because the values shown at the ticks still are on the original x-scale).

\[
\text{ggplot} (\text{msleep, aes(brainwt, sleep_total, colour = vore))} + \\
\text{geom_point()} + \\
\text{xlab("Brain weight (logarithmic scale)"}) + \\
\text{ylab("Total sleep time")} + \\
\text{scale_x_log10()}
\]

2.7.4 Comparing groups

We frequently wish to make visual comparison of different groups. One way to display differences between groups in plots is to use `faceting`, i.e. to create a grid of plots corresponding to the different groups. For instance, in our plot of animal brain weight versus total sleep time, we may wish to separate the different feeding behaviours (omnivores, carnivores, etc.) in the `msleep` data using faceting instead of different coloured points. In `ggplot2` we do this by adding a call to `facet_wrap` to the plot:

\[
\text{ggplot} (\text{msleep, aes(brainwt, sleep_total))} + \\
\text{geom_point()} + \\
\text{xlab("Brain weight (logarithmic scale)"}) + \\
\text{ylab("Total sleep time")} + \\
\text{scale_x_log10()} + \\
\text{facet_wrap(~ vore)}
\]

Note that the x-axes and y-axes of the different plots in the grid all have the same
scale and limits.

Exercise 2.15. Using the diamonds data, do the following:

1. Create a scatterplot with carat along the x-axis and price along the y-axis, faceted by cut.

2. Read the documentation for facet_wrap (?facet_wrap). How can you change the number of rows in the plot grid? Create the same plot as in part 1, but with 5 rows.

2.7.5 Boxplots

Another option for comparing groups is boxplots (also called box-and-whiskers plots). Using ggplot2, we create boxplots for animal sleep times, grouped by feeding behaviour, with geom_boxplot. Using base R, we use the boxplot function instead:

```
# Base R:
boxplot(sleep_total ~ vore, data = msleep)

# ggplot2:
ggplot(msleep, aes(vore, sleep_total)) + geom_boxplot()
```

The boxes visualise important descriptive statistics for the different groups, similar to what we got using summary:

- **Median**: the thick black line inside the box.
- **First quartile**: the bottom of the box.
- **Third quartile**: the top of the box.
- **Minimum**: the end of the line (“whisker”) that extends from the bottom of the box.
- **Maximum**: the end of the line that extends from the top of the box.
- **Outliers**: observations that deviate too much\(^\text{12}\) from the rest are shown as separate points. These outliers are not included in the computation of the median, quartiles and the extremes.

Note that just as for a scatterplot, the code consists of three parts:

- **Data**: given by the first argument in the call to ggplot: msleep

\(^{12}\)In this case, too much means that they are more than 1.5 times the height of the box away from the edges of the box.
Figure 2.4: Boxplots showing mammal sleeping times.
• **Aesthetics**: given by the second argument in the `ggplot` call: `aes`, where we map the group variable `vore` to the x-axis and the numerical variable `sleep_total` to the y-axis.

• **Geoms**: given by `geom_boxplot`, meaning that the data will be visualised with boxplots.

Exercise 2.16. Using the `diamonds` data, do the following:

1. Create boxplots of diamond prices, grouped by cut.
2. Read the documentation for `geom_boxplot`. How can you change the colours of the boxes and their outlines?
3. Replace `cut` by `reorder(cut, price, median)` in the plot’s aesthetics. What does `reorder` do? What is the result?
4. Add `geom_jitter(size = 0.1, alpha = 0.2)` to the plot. What happens?

2.7.6 Histograms

To show the distribution of a continuous variable, we can use a histogram, in which the data is split into a number of bins and the number of observations in each bin is shown by a bar. The `ggplot2` code for histograms follows the same pattern as other plots, while the base R code uses the `hist` function:

```r
# Base R:
hist(msleep$sleep_total)

# ggplot2:
ggplot(msleep, aes(sleep_total)) +
  geom_histogram()
```

As before, the three parts in the `ggplot2` code are:

• **Data**: given by the first argument in the call to `ggplot`: `msleep`
• **Aesthetics**: given by the second argument in the `ggplot` call: `aes`, where we map `sleep_total` to the x-axis.
• **Geoms**: given by `geom_histogram`, meaning that the data will be visualised by a histogram.

Exercise 2.17. Using the `diamonds` data, do the following:
Figure 2.5: A histogram for mammal sleeping times.
1. Create a histogram of diamond prices.
2. Create histograms of diamond prices for different cuts, using facetting.
3. Add a suitable argument to `geom_histogram` to add black outlines around the bars\(^{13}\).

2.8 Plotting categorical data

When visualising categorical data, we typically try to show the counts, i.e. the number of observations, for each category. The most common plot for this type of data is the bar chart.

2.8.1 Bar charts

Bar charts are discrete analogues to histograms, where the category counts are represented by bars. The code for creating them is:

```r
# Base R
barplot(table(msleep$vore))

# ggplot2
ggplot(msleep, aes(vore)) + geom_bar()
```

As always, the three parts in the `ggplot2` code are:

- **Data**: given by the first argument in the call to `ggplot`: `msleep`
- **Aesthetics**: given by the second argument in the `ggplot` call: `aes`, where we map `vore` to the x-axis.
- **Geoms**: given by `geom_bar`, meaning that the data will be visualised by a bar chart.

To create a stacked bar chart using `ggplot2`, we use map all groups to the same value on the x-axis and then map the different groups to different colours. This can be done as follows:

```r
ggplot(msleep, aes(factor(1), fill = vore)) + geom_bar()
```

Exercise 2.18. Using the `diamonds` data, do the following:

\(^{13}\)Personally, I don’t understand why anyone would ever plot histograms without outlines!
Figure 2.6: A bar chart for the mammal sleep data.
1. Create a bar chart of diamond cuts.
2. Add different colours to the bars by adding a fill argument to geom_bar.
3. Check the documentation for geom_bar. How can you decrease the width of the bars?
4. Return to the code you used for part 1. Add fill = clarity to the aes. What happens?
5. Next, add position = "dodge" to geom_bar. What happens?
6. Return to the code you used for part 1. Add coord_flip() to the plot. What happens?

2.9 Saving your plot

When you create a ggplot2 plot, you can save it as a plot object in R:

```r
library(ggplot2)
myPlot <- ggplot(msleep, aes(sleep_total, sleep_rem)) +
  geom_point()
```

To plot a saved plot object, just write its name:

```r
myPlot
```

If you like, you can add things to the plot, just as before:

```r
myPlot + xlab("I forgot to add a label!")
```

To save your plot object as an image file, use ggsave. The width and height arguments allows us to control the size of the figure (in inches, unless you specify otherwise using the units argument).

```r
ggsave("filename.pdf", myPlot, width = 5, height = 5)
```

If you don’t supply the name of a plot object, ggsave will save the last ggplot2 plot you created.

In addition to pdf, you can save images e.g. as jpg, tif, eps, svg, and png files, simply by changing the file extension in the filename. Alternatively, graphics from both base R and ggplot2 can be saved using the pdf and png functions, using dev.off to mark the end of the file:

```r
pdf("filename.pdf", width = 5, height = 5)
myPlot
dev.off()

png("filename.png", width = 500, height = 500)
```
2.10. TROUBLESHOOTING

plot(msleep$sleep_total, msleep$sleep_rem)
dev.off()

Note that you also can save graphics by clicking on the Export button in the Plots panel in RStudio. Using code to save your plot is usually a better idea, because of reproducibility. At some point you’ll want to go back and make changes to an old figure, and that will be much easier if you already have the code to export the graphic.

Exercise 2.19. Do the following:

1. Create a plot object and save it as a 4 by 4 inch png file.
2. When preparing images for print, you may want to increase their resolution. Check the documentation for `ggsave`. How can you increase the resolution of your png file to 600 dpi?

You’ve now had a first taste of graphics using R. We have however only scratched the surface, and will return to the many uses of statistical graphics in Chapter 4.

2.10 Troubleshooting

Every now and then R will throw an error message at you. Sometimes these will be informative and useful, as in this case:

```r
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
means(age)
```

where R prints:

```r
> means(age)
Error in means(age) : could not find function "means"
```

This tells us that the function that we are trying to use, `means` does not exist. There are two possible reasons for this: either we haven’t loaded the package in which the function exists, or we have misspelt the function name. In our example the latter is true, the function that we really wanted to use was of course `mean` and not `means`.

At other times interpreting the error message seems insurmountable, like in these examples:

```r
Error in if (str_count(string = f[[j]], pattern = "\\S\") == 1) { :
\n  argument is of length zero
```
Error in if (require[y] > supply[x]) { : \missing value where TRUE/FALSE needed

When you encounter an error message, I recommend following these steps:

1. Read the error message carefully and try to decipher it. Have you seen it before? Does it point to a particular variable or function? Check Section 11.2 of this book, which deals with common error messages in R.

2. Check your code. Have you misspelt any variable or function names? Are there missing brackets, strange commas or invalid characters?

3. Copy the error message and do a web search using the message as your search term. It is more than likely that somebody else has encountered the same problem, and that you can find a solution to it online. This is a great shortcut for finding solutions to your problem. In fact, this may well be the single most important tip in this entire book.

4. Read the documentation for the function causing the error message, and look at some examples of how to use it (both in the documentation and online, e.g. in blog posts). Have you used it correctly?

5. Use the debugging tools presented in Chapter 11, or try to simplify the example that you are working with (e.g. removing parts of the analysis or the data) and see if that removes the problem.

6. If you still can’t find a solution, post a question at a site like Stack Overflow or the RStudio community forums. Make sure to post your code and describe the context in which the error message appears. If at all possible, post a reproducible example, i.e. a piece of code that others can run, that causes the error message. This will make it a lot easier for others to help you.
Chapter 3

Transforming, summarising, and analysing data

Most datasets are stored as tables, with rows and columns. In this chapter we’ll see how you can import and export such data, and how it is stored in R. We’ll also discuss how you can transform, summarise, and analyse your data.

After working with the material in this chapter, you will be able to use R to:

- Distinguish between different data types,
- Import data from Excel spreadsheets and csv text files,
- Compute descriptive statistics for subgroups in your data,
- Find interesting points in your data,
- Add new variables to your data,
- Modify variables in your data,
- Remove variables from your data,
- Save and export your data,
- Work with RStudio projects,
- Run t-tests and fit linear models,
- Use %>% pipes to chain functions together.

The chapter ends with a discussion of ethical guidelines for statistical work.

3.1 Data frames and data types

3.1.1 Types and structures

We have already seen that different kinds of data require different kinds of statistical methods. For numeric data we create boxplots and compute means, but for categor-
ical data we don’t. Instead we produce bar charts and display the data in tables. It is no surprise then, that what R also treats different kinds of data differently.

In programming, a variable’s _data type_ describes what kind of object is assigned to it. We can assign many different types of objects to the variable a: it could for instance contain a number, text, or a data frame. In order to treat a correctly, R needs to know what data type its assigned object has. In some programming languages, you have to explicitly state what data type a variable has, but not in R. This makes programming R simpler and faster, but can cause problems if a variable turns out to have a different data type than what you thought\(^1\).

R has six basic data types. For most people, it suffices to know about the first three in the list below:

- **numeric**: numbers like 1 and 16.823 (sometimes also called double).
- **logical**: true/false values (boolean): either TRUE or FALSE.
- **character**: text, e.g. "a", "Hello! I’m Ada." and "name@domain.com".
- **integer**: integer numbers, denoted in R by the letter L: 1L, 55L.
- **complex**: complex numbers, like 2+3i. Rarely used in statistical work.
- **raw**: used to hold raw bytes. Don’t fret if you don’t know what that means. You can have a long and meaningful career in statistics, data science, or pretty much any other field without ever having to worry about raw bytes. We won’t discuss raw objects again in this book.

In addition, these can be combined into special data types sometimes called _data structures_, examples of which include vectors and data frames. Important data structures include **factor**, which is used to store categorical data, and the awkwardly named **POSIXct** which is used to store date and time data.

To check what type of object a variable is, you can use the `class` function:

```r
x <- 6
y <- "Scotland"
z <- TRUE

class(x)
class(y)
class(z)
```

What happens if we use `class` on a vector?

```r
numbers <- c(6, 9, 12)
class(numbers)
```

class returns the data type of the elements of the vector. So what happens if we put objects of different type together in a vector?

\(^1\)And the subsequent troubleshooting makes programming R more difficult and slower.
3.1. DATA FRAMES AND DATA TYPES

all_together <- c(x, y, z)
all_together
class(all_together)

In this case, R has coerced the objects in the vector to all be of the same type. Sometimes that is desirable, and sometimes it is not. The lesson here is to be careful when you create a vector from different objects. We’ll learn more about coercion and how to change data types in Section 5.1.

3.1.2 Types of tables

The basis for most data analyses in R are data frames: spreadsheet-like tables with rows and columns containing data. You encountered some data frames in the previous chapter. Have a quick look at them to remind yourself of what they look like:

```r
# Bookstore example
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
purchase <- c(20, 59, 2, 12, 22, 160, 34, 34, 29)
bookstore <- data.frame(age, purchase)
View(bookstore)

# Animal sleep data
library(ggplot2)
View(msleep)

# Diamonds data
View(diamonds)
```

Notice that all three data frames follow the same format: each column represents a variable (e.g. age) and each row represents an observation (e.g. an individual). This is the standard way to store data in R (as well as the standard format in statistics in general). In what follows, we will use the terms column and variable interchangeably, to describe the columns/variables in a data frame.

This kind of table can be stored in R as different types of objects - that is, in several different ways. As you’d expect, the different types of objects have different properties and can be used with different functions. Here’s the run-down of four common types:

- **matrix**: a table where all columns must contain objects of the same type (e.g. all numeric or all character). Uses less memory than other types and allows for much faster computations, but is difficult to use for certain types of data manipulation, plotting and analyses.
- **data.frame**: the most common type, where different columns can contain different types (e.g. one numeric column, one character column).
- **data.table**: an enhanced version of data.frame.
- **tbl_df** (“tibble”): another enhanced version of data.frame.
First of all, in most cases it doesn’t matter which of these four that you use to store your data. In fact, they all look similar to the user. Have a look at the following datasets (WorldPhones and airquality come with base R):

```r
# First, an example of data stored in a matrix:
?WorldPhones
class(WorldPhones)
View(WorldPhones)

# Next, an example of data stored in a data frame:
?airquality
class(airquality)
View(airquality)

# Finally, an example of data stored in a tibble:
library(ggplot2)
?msleep
class(msleep)
View(msleep)
```

That being said, in some cases it really matters which one you use. Some functions require that you input a matrix, while others may break or work differently from what was intended if you input a tibble instead of an ordinary data frame. Luckily, you can convert objects into other types:

```r
WorldPhonesDF <- as.data.frame(WorldPhones)
class(WorldPhonesDF)

airqualityMatrix <- as.matrix(airquality)
class(airqualityMatrix)
```

Exercise 3.1. The following tasks are all related to data types and data structures:

1. Create a text variable using e.g. `a <- "A rainy day in Edinburgh"`. Check that it gets the correct type. What happens if you use single quotes marks instead of double quotes when you create the variable?

2. What data types are the sums `1 + 2`, `1L + 2` and `1L + 2L`?

3. What happens if you add a `numeric` to a `character`, e.g. "Hello" + 1?

4. What happens if you perform mathematical operations involving a `numeric` and a `logical`, e.g. `FALSE * 2` or `TRUE + 1`?
3.2. VECTORS IN DATA FRAMES

Exercise 3.2. What do the functions \texttt{ncol}, \texttt{nrow}, \texttt{dim}, \texttt{names}, and \texttt{row.names} return when applied to a data frame?

Exercise 3.3. \texttt{matrix} tables can be created from vectors using the function of the same name. Using the vector \texttt{x <- 1:6} use \texttt{matrix} to create the following matrices:

\[
\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
1 & 4 \\
2 & 5 \\
3 & 6
\end{pmatrix}
\]

Remember to check \texttt{?matrix} to find out how to set the dimensions of the matrix, and how it is filled with the numbers from the vector!

3.2 Vectors in data frames

In the next few sections, we will explore the \texttt{airquality} dataset. It contains daily air quality measurements from New York during a period of five months:

- \texttt{Ozone}: mean ozone concentration (ppb),
- \texttt{Solar.R}: solar radiation (Langley),
- \texttt{Wind}: average wind speed (mph),
- \texttt{Temp}: maximum daily temperature in degrees Fahrenheit,
- \texttt{Month}: numeric month (May=5, June=6, and so on),
- \texttt{Day}: numeric day of the month (1-31).

There are lots of things that would be interesting to look at in this dataset. What was the mean temperature during the period? Which day was the hottest? Which was the windiest? What days were the temperature more than 90 degrees Fahrenheit? To answer these questions, we need to be able to access the vectors inside the data frame. We also need to be able to quickly and automatically screen the data in order to find interesting observations (e.g. the hottest day)

3.2.1 Accessing vectors and elements

In Section 2.6, we learned how to compute the mean of a vector. We also learned that to compute the mean of a vector \texttt{that is stored inside a data frame}\footnote{This works regardless of whether this is a regular \texttt{data.frame}, a \texttt{data.table} or a tibble.} we could use a dollar sign: \texttt{data_frame_name$vector_name}. Here is an example with the \texttt{airquality} data:
Extract the Temp vector:
airquality$Temp

Compute the mean temperature:
mean(airquality$Temp)

If we want to grab a particular element from a vector, we must use its index within square brackets: [index]. The first element in the vector has index 1, the second has index 2, the third index 3, and so on. To access the fifth element in the Temp vector in the airquality data frame, we can use:

airquality$Temp[5]

The square brackets can also be applied directly to the data frame. The syntax for this follows that used for matrices in mathematics: airquality[i, j] means the element at the i:th row and j:th column of airquality. We can also leave out either i or j to extract an entire row or column from the data frame. Here are some examples:

First, we check the order of the columns:
names(airquality)

We see that Temp is the 4th column.

airquality[5, 4] # The 5th element from the 4th column,
 # i.e. the same as airquality$Temp[5]
airquality[5,] # The 5th row of the data
airquality[, 4] # The 4th column of the data, like airquality$Temp
airquality[[4]] # The 4th column of the data, like airquality$Temp
airquality[, c(2, 4, 6)] # The 2nd, 4th and 6th columns of the data
airquality[, -2] # All columns except the 2nd one
airquality[, c("Temp", "Wind")]] # The Temp and Wind columns

Exercise 3.4. The following tasks all involve using the the [i, j] notation for extracting data from data frames:

1. Why does airquality[, 3] not return the third row of airquality?

2. Extract the first five rows from airquality. Hint: a fast way of creating the vector c(1, 2, 3, 4, 5) is to write 1:5.

3. Compute the correlation between the Temp and Wind vectors of airquality without referring to them using $.

4. Extract all columns from airquality except Temp and Wind.
3.2. VECTORS IN DATA FRAMES

3.2.2 Use your dollars

The $ operator can be used not just to extract data from a data frame, but also to manipulate it. Let’s return to our bookstore data frame, and see how we can make changes to it using the dollar sign.

```r
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
purchase <- c(20, 59, 2, 12, 22, 160, 34, 34, 29)
bookstore <- data.frame(age, purchase)
```

Perhaps there was a data entry error - the second customer was actually 18 years old and not 48. We can assign a new value to that element by referring to it in either of two ways:

```r
bookstore$age[2] <- 18
# or
bookstore[2, 1] <- 18
```

We could also change an entire column if we like. For instance, if we wish to change the age vector to months instead of years, we could use

```r
bookstore$age <- bookstore$age * 12
```

What if we want to add another variable to the data, for instance the length of the customers’ visits in minutes? There are several ways to accomplish this, one of which involves the dollar sign:

```r
bookstore$visit_length <- c(5, 2, 22, 12, 31, 9, 10, 11)
bookstore
```

As you see, the new data has now been added to a new column in the data frame.

Exercise 3.5. Use the bookstore data frame to do the following:

1. Add a new variable rev_per_minute which is the ratio between purchase and the visit length.
2. Oh no, there’s been an error in the data entry! Replace the purchase amount for the 80-year old customer with 16.

3.2.3 Using conditions

A few paragraphs ago, we were asking which was the hottest day in the airquality data. Let’s find out! We already know how to find the maximum value in the Temp vector:
max(airquality$Temp)

But can we find out which day this corresponds to? We could of course manually go through all 153 days e.g. by using `View(airquality)`, but that seems tiresome and wouldn’t even be possible in the first place if we’d had more observations. A better option is therefore to use the function `which.max`:

```
which.max(airquality$Temp)
```

`which.max` returns the index of the observation with the maximum value. If there is more than one observation attaining this value, it only returns the first of these.

We’ve just used `which.max` to find out that day 120 was the hottest during the period. If we want to have a look at the entire row for that day, we can use

```
airquality[120,]
```

Alternatively, we could place the call to `which.max` inside the brackets. Because `which.max(airquality$Temp)` returns the number 120, this yields the same result as the previous line:

```
airquality[which.max(airquality$Temp),]
```

Were we looking for the day with the lowest temperature, we’d use `which.min` analogously. In fact, we could use any function or computation that returns an index in the same way, placing it inside the brackets to get the corresponding rows or columns. This is extremely useful if we want to extract observations with certain properties, for instance all days where the temperature was above 90 degrees. We do this using conditions, i.e. by giving statements that we wish to be fulfilled.

As a first example of a condition, we use the following, which checks if the temperature exceeds 90 degrees:

```
airquality$Temp > 90
```

For each element in `airquality$Temp` this returns either `TRUE` (if the condition is fulfilled, i.e. when the temperature is greater than 90) or `FALSE` (if the conditions isn’t fulfilled, i.e. when the temperature is 90 or lower). If we place the condition inside brackets following the name of the data frame, we will extract only the rows corresponding to those elements which were marked with `TRUE`:

```
airquality[airquality$Temp > 90,]
```

If you prefer, you can also store the `TRUE` or `FALSE` values in a new variable:

```
airquality$Hot <- airquality$Temp > 90
```

There are several logical operators and functions which are useful when stating conditions in R. Here are some examples:
3.2. VECTORS IN DATA FRAMES

\begin{verbatim}
3 8

Check if a equals b
a == b
Check if a is greater than b
a > b
Check if a is less than b
a < b
Check if a is equal to or greater than b
a >= b
Check if a is equal to or less than b
a <= b
Check if a is not equal to b
a != b
Check if a is NA
is.na(a)
Check if a equals at least one of 1, 4, 9
a %in% c(1, 4, 9)
\end{verbatim}

When checking a conditions for all elements in a vector, we can use `which` to get the indices of the elements that fulfill the condition:

\begin{verbatim}
which(airquality$Temp > 90)
\end{verbatim}

If we want to know if all elements in a vector fulfill the condition, we can use `all`:

\begin{verbatim}
all(airquality$Temp > 90)
\end{verbatim}

In this case, it returns `FALSE`, meaning that not all days had a temperature above 90 (phew!). Similarly, if we wish to know whether at least one day had a temperature above 90, we can use `any`:

\begin{verbatim}
any(airquality$Temp > 90)
\end{verbatim}

To find how many elements that fulfill a condition, we can use `sum`:

\begin{verbatim}
sum(airquality$Temp > 90)
\end{verbatim}

Why does this work? Remember that `sum` computes the sum of the elements in a vector, and that when `logical` values are used in computations, they are treated as 0 (`FALSE`) or 1 (`TRUE`). Because the condition returns a vector of `logical` values, the sum of them becomes the number of 1’s - the number of `TRUE` values - i.e. the number of elements that fulfill the condition.

To find the proportion of elements that fulfill a condition, we can count how many elements fulfill it and then divide by how many elements are in the vector. This is exactly what happens if we use `mean`:

\begin{verbatim}
mean(airquality$Temp > 90)
\end{verbatim}

Finally, we can combine conditions by using the logical operators `&` (AND), `|` (OR), and, less frequently, `xor` (exclusive or, XOR). Here are some examples:

\begin{verbatim}
3 8
\end{verbatim}
Is a less than b and greater than 1?
\(a < b \& a > 1\)

Is a less than b and equal to 4?
\(a < b \& a == 4\)

Is a less than b and/or equal to 4?
\(a < b \mid a == 4\)

Is a equal to 4 and/or equal to 5?
\(a == 4 \mid a == 5\)

Is a less than b XOR equal to 4?
I.e. is one and only one of these satisfied?
xor(a < b, a == 4)

~

Exercise 3.6. The following tasks all involve checking conditions for the `airquality` data:

1. Which was the coldest day during the period?
2. How many days was the wind speed greater than 17 mph?
3. How many missing values are there in the `Ozone` vector?
4. How many days are there for which the temperature was below 70 and the wind speed was above 10?

Exercise 3.7. The function `cut` can be used to create a categorical variable from a numerical variable, by dividing it into categories corresponding to different intervals. Reads its documentation and then create a new categorical variable in the `airquality` data, `TempCat`, which divides `Temp` into the three intervals (50, 70], (70, 90], (90, 110].

3.3 Importing data

So far, we’ve looked at examples of data they either came shipped with base R or `ggplot2`, or simple toy examples that we created ourselves, like `bookstore`. While you can do all your data entry work in R, `bookstore` style, it is much more common

3In interval notation, (50, 70] means that the interval contains all values between 50 and 70, excluding 50 but including 70; the intervals is open on the left but closed to the right.
to load data from other sources. Two important types of files are comma-separated value files, .csv, and Excel spreadsheets, .xlsx. .csv files are spreadsheets stored as text files - basically Excel files stripped down to the bare minimum - no formatting, no formulas, no macros. You can open and edit them in spreadsheet software like LibreOffice Calc, Google Sheets or Microsoft Excel. Many devices and databases can export data in .csv format, making it a commonly used file format that you are likely to encounter sooner rather than later.

3.3.1 Importing csv files

In order to load data from a file into R, you need its path - that is, you need to tell R where to find the file. Unless you specify otherwise, R will look for files in its current working directory. To see what your current working directory is, run the following code in the Console panel:

```r
getwd()
```

In RStudio, your working directory will usually be shown in the Files panel. If you have opened RStudio by opening a .R file, the working directory will be the directory in which the file is stored. You can change the working directory by using the function `setwd` or selecting `Session > Set Working Directory > Choose Directory` in the RStudio menu.

Before we discuss paths further, let’s look at how you can import data from a file that is in your working directory. The data files that we’ll use in examples in this book can be downloaded from the book’s web page - data.zip - open it and copy/extract the files to the folder that is your current working directory. Open philosophers.csv with a spreadsheet software to have a quick look at it. Then open it in a text editor (for instance Notepad for Windows, TextEdit for Mac or Gedit for Linux). Note how commas are used to separate the columns of the data:

```
"Name","Description","Born","Deceased","Rating"
"Aristotle","Pretty influential, as philosophers go.",-384,"322 BC", "4.8"
"Basilides","Denied the existence of incorporeal entities.",-175, "125 BC",4
"Cercops","An Orphic poet",,"3.2"
"Dexippus","Neoplatonic!",235,"375 AD", "2.7"
"Epictetus","A stoic philosopher",50,"135 AD",5
"Favorinus","Sceptic",80,"160 AD", "4.7"
```

Then run the following code to import the data using the `read.csv` function and store it in a variable named `imported_data`:
imported_data <- read.csv("philosophers.csv")

If you get an error message that says:

Error in file(file, "rt") : cannot open the connection
In addition: Warning message:
In file(file, "rt") :
cannot open file 'philosophers.csv': No such file or directory

...it means that philosophers.csv is not in your working directory. Either move the file to the right directory (remember, you can use run getwd() to see what your working directory is) or change your working directory, as described above.

Now, let’s have a look at imported_data:

View(imported_data)
str(imported_data)

The columns Name and Description both contain text, and have been imported as character vectors. The Rating column contains numbers with decimals and has been imported as a numeric vector. The column Born only contain integer values, and has been imported as an integer vector. The missing value is represented by an NA. The Deceased column contains years formatted like 125 BC and 135 AD. These have been imported into a character vector - because numbers and letters are mixed in this column, R treats it as a text string (in Chapter 5 we will see how we can convert it to numbers or proper dates). In this case, the missing value is represented by an empty string, """, rather than by NA.

So, what can you do in case you need to import data from a file that is not in your working directory? This is a common problem, as many of us store script files and data files in separate folders (or even on separate drives). One option is to use file.choose, which opens a pop-up window that lets you choose which file to open using a graphical interface:

imported_data2 <- read.csv(file.choose())

A third option is not to write any code at all. Instead, you can import the data using RStudio’s graphical interface by choosing File > Import dataset > From Text (base) and then choosing philosophers.csv. This will generate the code needed to import the data (using read.csv) and run it in the Console window.

The latter two solutions work just fine if you just want to open a single file once. But if you want to reuse your code or run it multiple times, you probably don’t want to

If you are running an older version of R (specifically, a version older than the 4.0.0 version released in April 2020), the character vectors will have been imported as factor vectors instead. You can change that behaviour by adding a stringsAsFactors = FALSE argument to read.csv.
3.3. IMPORTING DATA

have to click and select your file each time. Instead, you can specify the path to your file in the call to `read.csv`.

3.3.2 File paths

File paths look different in different operating systems. If the user Mans has a file named `philosophers.csv` stored in a folder called MyData on his desktop, its path on an English-language Windows system would be:

C:\Users\Mans\Desktop\MyData\philosophers.csv

On a Mac it would be:

/Users/Mans/Desktop/MyData/philosophers.csv

And on Linux:

/home/Mans/Desktop/MyData/philosophers.csv

You can copy the path of the file from your file browser: Explorer⁵ (Windows), Finder⁶ (Mac) or Nautilus/similar⁷ (Linux). Once you have copied the path, you can store it in R as a character string.

Here’s how to do this on Mac and Linux:

```r
file_path <- "/Users/Mans/Desktop/MyData/philosophers.csv"  # Mac
file_path <- "/home/Mans/Desktop/MyData/philosophers.csv"  # Linux
```

If you’re working on a Windows system, file paths are written using backslashes, \, like so:

C:\Users\Mans\Desktop\MyData\file.csv

You have to be careful when using backslashes in character strings in R, because they are used to create special characters (see Section 5.5). If we place the above path in a string, R won’t recognise it as a path. Instead we have to reformat it into one of the following two formats:

```r
# Windows example 1:
file_path <- "C:/Users/Mans/Desktop/MyData/philosophers.csv"

# Windows example 2:
file_path <- "C:\\Users\\Mans\\Desktop\\MyData\\philosophers.csv"
```

⁵To copy the path, navigate to the file in Explorer. Hold down the Shift key and right-click the file, selecting Copy as path.

⁶To copy the path, navigate to the file in Finder and right-click/Control+click/two-finger click on the file. Hold down the Option key, and then select Copy “file name” as Pathname.

⁷To copy the path from Nautilus, navigate to the file and press Ctrl+L to show the path, then copy it. If you are using some other file browser or the terminal, my guess is that you’re tech-savvy enough that you don’t need me to tell you how to find the path of a file.
If you’ve copied the path to your clipboard, you can also get the path in the second of the formats above by using

```r
file_path <- readClipboard() # Windows example 3
```

Once the path is stored in `file_path`, you can then make a call to `read.csv` to import the data:

```r
imported_data <- read.csv(file_path)
```

Try this with your `philosophers.csv` file, to make sure that you know how it works.

Finally, you can read a file directly from a URL, by giving the URL as the file path. Here is an example with data from the WHO Global Tuberculosis Report:

```r
# Download WHO tuberculosis burden data:
tb_data <- read.csv("https://tinyurl.com/whotbdata")
```

`csv` files can differ slightly in how they are formatted - for instance, different symbols can be used to delimit the columns. You will learn how to handle this in the exercises below.

A downside to `read.csv` is that it is very slow when reading large (50 MB or more) `csv` files. Faster functions are available in add-on packages; see Section 5.7.1. In addition, it is also possible to import data from other statistical software packages such as SAS and SPSS, from other file formats like JSON, and from databases. We’ll discuss most of these in Section 5.14

3.3.3 Importing Excel files

One common file format we will discuss right away though - `.xlsx` - Excel spreadsheet files. There are several packages that can be used to import Excel files to R. I like the `openxlsx` package, so let’s install that:

```r
install.packages("openxlsx")
```

Now, download the `philosophers.xlsx` file from the book’s web page and save it in a folder of your choice. Then set `file_path` to the path of the file, just as you did for the `.csv` file. To import data from the Excel file, you can then use:

```r
library(openxlsx)
imported_from_Excel <- read.xlsx(file_path)
```

```r
View(imported_from_Excel)
str(imported_from_Excel)
```

As with `read.csv`, you can replace the file path with `file.choose()` in order to select the file manually.
Exercise 3.8. The abbreviation CSV stands for Comma Separated Values, i.e. that commas are used to separate the data columns. Unfortunately, the .csv format is not standardised, and .csv files can use different characters to delimit the columns. Examples include semicolons (;) and tabs (multiple spaces, denoted \t in strings in R). Moreover, decimal points can be given either as points (.) or as commas (,).

Download the vas.csv file from the book’s web page. In this dataset, a number of patients with chronic pain have recorded how much pain they experience each day during a period, using the Visual Analogue Scale (VAS, ranging from 0 - no pain - to 10 - worst imaginable pain). Inspect the file in a spreadsheet software and a text editor - check which symbol is used to separate the columns and whether a decimal point or a decimal comma is used. Then set file_path to its path and import the data from it using the code below:

```r
vas <- read.csv(file_path, sep = ";", dec = ",", skip = 4)
View(vas)
str(vas)
```

1. Why are there two variables named X and X.1 in the data frame?
2. What happens if you remove the sep = ";" argument?
3. What happens if you instead remove the dec = "," argument?
4. What happens if you instead remove the skip = 4 argument?
5. What happens if you change skip = 4 to skip = 5?

Exercise 3.9. Download the projects-email.xlsx file from the book’s web page and have a look at it in a spreadsheet software. Note that it has three sheet: Projects, Email, and Contact.

1. Read the documentation for read.xlsx. How can you import the data from the second sheet, Email?
2. Some email addresses are repeated more than once. Read the documentation for unique. How can you use it to obtain a vector containing the email addresses without any duplicates?

Exercise 3.10. Download the vas-transposed.csv file from the book’s web page and have a look at it in a spreadsheet software. It is a transposed version of vas.csv, where rows represent variables and columns represent observations (instead of the other way around, as is the case in data frames in R). How can we import this data into R?
1. Import the data using `read.csv`. What does the resulting data frame look like?

2. Read the documentation for `read.csv`. How can you make it read the row names that can be found in the first column of the `.csv` file?

3. The function `t` can be applied to transpose (i.e. rotate) your data frame. Try it out on your imported data. Is the resulting object what you were looking for? What happens if you make a call to `as.data.frame` with your data after transposing it?

3.4 Saving and exporting your data

In many a case, data manipulation is a huge part of statistical work, and of course you want to be able to save a data frame after manipulating it. There are two options for doing this in R - you can either export the data as e.g. a `.csv` or a `.xlsx` file, or save it in R format as an `.RData` file.

3.4.1 Exporting data

Just as we used the functions `read.csv` and `read.xlsx` to import data, we can use `write.csv` and `write.xlsx` to export it. The code below saves the `bookstore` data frame as a `.csv` file and an `.xlsx` file. Both files will be created in the current working directory. If you wish to store them somewhere else, you can replace the "bookstore.csv" bit with a full path, e.g. "/home/mans/my-business/bookstore.csv".

```r
# Bookstore example
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
purchase <- c(20, 59, 2, 12, 22, 160, 34, 34, 29)
bookstore <- data.frame(age, purchase)

# Export to .csv:
write.csv(bookstore, "bookstore.csv")

# Export to .xlsx (Excel):
library(openxlsx)
write.xlsx(bookstore, "bookstore.xlsx")
```

3.4.2 Saving and loading R data

Being able to export to different spreadsheet formats is very useful, but sometimes you want to save an object that can’t be saved in a spreadsheet format. For instance, you may wish to save a machine learning model that you’ve created. `.RData` files can be used to store one or more R objects.
To save the objects `bookstore` and `age` in a `.Rdata` file, we can use the `save` function:
```r
save(bookstore, age, file = "myData.RData")
```

To save all objects in your environment, you can use `save.image`:
```r
save.image(file = "allMyData.RData")
```

When we wish to load the stored objects, we use the `load` function:
```r
load(file = "myData.RData")
```

3.5 RStudio projects

It is good practice to create a new folder for each new data analysis project that you are working on, where you store code, data and the output from the analysis. In RStudio you can associate a folder with a Project, which lets you start RStudio with that folder as your working directory. Moreover, by opening another Project you can have several RStudio sessions, each with their separate variables and working directories, running simultaneously.

To create a new Project, click `File > New Project` in the RStudio menu. You then get to choose whether to create a Project associated with a folder that already exists, or to create a Project in a new folder. After you’ve created the Project, it will be saved as an `.Rproj` file. You can launch RStudio with the Project folder as the working directory by double-clicking the `.Rproj` file. If you already have an active RStudio session, this will open another session in a separate window.

When working in a Project, I recommend that you store your data in a subfolder of the Project folder. You can use relative paths to access your data files, i.e. paths that are relative to your working directory. For instance, if the file `bookstore.csv` is in a folder in your working directory called `Data`, its relative path is:
```r
file_path <- "Data/bookstore.csv"
```

Much simpler that having to write the entire path, isn’t it?

If instead your working directory is contained inside the folder where `bookstore.csv` is stored, its relative path would be
```r
file_path <- "./bookstore.csv"
```

The beauty of using relative paths is that they are simpler to write, and if you transfer the entire project folder to another computer, your code will still run, because the relative paths will stay the same.
3.6 Running a t-test

R has thousands of functions for running different statistical hypothesis tests. We’ll delve deeper into that in Chapter 7, but we’ll have a look at one of them right away: `t.test`, which (yes, you guessed it!) can be used to run Student’s t-test, which can be used to test whether the mean of two populations are equal.

Let’s say that we want to compare the mean sleeping times of carnivores and herbivores, using the `msleep` data. `t.test` takes two vectors as input, corresponding to the measurements from the two groups:

```r
library(ggplot2)
carnivores <- msleep[msleep$vore == "carni",]
herbivores <- msleep[msleep$vore == "herbi",]
t.test(carnivores$sleep_total, herbivores$sleep_total)
```

The output contains a lot of useful information, including the p-value (0.53) and a 95 % confidence interval. `t.test` contains a number of useful arguments that we can use to tailor the test to our taste. For instance, we can change the confidence level of the confidence interval (to 90 %, say), use a one-sided alternative hypothesis (“carnivores sleep more than herbivores”, i.e. the mean of the first group is greater than that of the second group) and perform the test under the assumption of equal variances in the two samples:

```r
t.test(carnivores$sleep_total, herbivores$sleep_total, conf.level = 0.90, alternative = "greater", var.equal = TRUE)
```

We’ll explore `t.test` and related functions further in Section 7.2.

3.7 Fitting a linear regression model

The `mtcars` data from Henderson and Velleman (1981) has become one of the classic datasets in R, and a part of the initiation rite for new R users is to use the `mtcars` data to fit a linear regression model. The data describes fuel consumption, number of cylinders and other information about cars from the 1970’s:

```r
?mtcars
View(mtcars)
```

Let’s have a look at the relationship between gross horsepower (hp) and fuel consumption (mpg):

```r
library(ggplot2)
ggplot(mtcars, aes(hp, mpg)) + geom_point()
```
The relationship doesn’t appear to be perfectly linear, but nevertheless, we can try fitting a linear regression model to the data. This can be done using \texttt{lm}. We fit a model with \texttt{mpg} as the response variable and \texttt{hp} as the explanatory variable:

\begin{verbatim}
 m <- lm(mpg ~ hp, data = mtcars)
\end{verbatim}

The first argument is a formula, saying that \texttt{mpg} is a function of \texttt{hp}, i.e.

\[mpg = \beta_0 + \beta_1 \cdot hp. \]

A summary of the model is obtained using \texttt{summary}. Among other things, it includes the estimated parameters, p-values and the coefficient of determination R^2.

\begin{verbatim}
 summary(m)
\end{verbatim}

We can add the fitted line to the scatterplot by using \texttt{geom_abline}, which lets us add a straight line with a given intercept and slope - we take these to be the coefficients from the fitted model, given by \texttt{coef}:

\begin{verbatim}
 # Check model coefficients:
 coef(m)

 # Add regression line to plot:
 ggplot(mtcars, aes(hp, mpg)) + geom_point() + geom_abline(aes(intercept = coef(m)[1], slope = coef(m)[2]), colour = "red")
\end{verbatim}

Diagnostic plots for the residuals are obtained using \texttt{plot}:

\begin{verbatim}
 plot(m)
\end{verbatim}

If we wish to add further variables to the model, we simply add them to the right-hand-side of the formula in the function call:

\begin{verbatim}
 m2 <- lm(mpg ~ hp + wt, data = mtcars)
 summary(m2)
\end{verbatim}

In this case, the model becomes

\[mpg = \beta_0 + \beta_1 \cdot hp + \beta_2 \cdot wt. \]

There is much more to be said about linear models in R. We’ll return to them in Section 8.1.

~
Exercise 3.11. Fit a linear regression model to the mtcars data, using mpg as the response variable and hp, wt, cyl, and am as explanatory variables. Are all four explanatory variables significant?

3.8 Grouped summaries

Being able to compute the mean temperature for the airquality data during the entire period is great, but it would be even better if we also had a way to compute it for each month. The aggregate function can be used to create that kind of grouped summary.

To begin with, let’s compute the mean temperature for each month. Using aggregate, we do this as follows:

```r
aggregate(Temp ~ Month, data = airquality, FUN = mean)
```

The first argument is a formula, similar to what we used for lm, saying that we want a summary of Temp grouped by Month. Similar formulas are used also in other R functions, for instance when building regression models. In the second argument, data, we specify in which data frame the variables are found, and in the third, FUN, we specify which function should be used to compute the summary.

By default, mean returns NA if there are missing values. In airquality, Ozone contains missing values, but when we compute the grouped means the results are not NA:

```r
aggregate(Ozone ~ Month, data = airquality, FUN = mean)
```

By default, aggregate removes NA values before computing the grouped summaries.

It is also possible to compute summaries for multiple variables at the same time. For instance, we can compute the standard deviations (using sd) of Temp and Wind, grouped by Month:

```r
aggregate(cbind(Temp, Wind) ~ Month, data = airquality, FUN = sd)
```

aggregate can also be used to count the number of observations in the groups. For instance, we can count the number of days in each month. In order to do so, we put a variable with no NA values on the left-hand side in the formula, and use length, which returns the length of a vector:

```r
aggregate(Temp ~ Month, data = airquality, FUN = length)
```

Another function that can be used to compute grouped summaries is by. The results are the same, but the output is not as nicely formatted. Here’s how to use it to compute the mean temperature grouped by month:
3.9. USING %>% PIPES

by(airquality$Temp, airquality$Month, mean)

What makes by useful is that unlike aggregate it is easy to use with functions that take more than one variable as input. If we want to compute the correlation between Wind and Temp grouped by month, we can do that as follows:

names(airquality) # Check that Wind and Temp are in columns 3 and 4
by(airquality[, 3:4], airquality$Month, cor)

For each month, this outputs a correlation matrix, which shows both the correlation between Wind and Temp and the correlation of the variables with themselves (which always is 1).

Exercise 3.12. Load the VAS pain data vas.csv from Exercise 3.8. Then do the following:

1. Compute the mean VAS for each patient.
2. Compute the lowest and highest VAS recorded for each patient.
3. Compute the number of high-VAS days, defined as days where the VAS was at least 7, for each patient.

Exercise 3.13. Install the datasauRus package using install.packages("datasauRus") (note the capital R!). It contains the dataset datasaurus_dozen. Check its structure and then do the following:

1. Compute the mean of x, mean of y, standard deviation of x, standard deviation of y, and correlation between x and y, grouped by dataset. Are there any differences between the 12 datasets?
2. Make a scatterplot of x against y for each dataset (use facetting!). Are there any differences between the 12 datasets?

3.9 Using %>% pipes

Consider the code you used to solve part 1 of Exercise 3.5:

bookstore$rev_per_minute <- bookstore$purchase / bookstore$visit_length

Wouldn’t it be more convenient if you didn’t have to write the bookstore$ part each time? To just say once that you are manipulating bookstore, and have R implicitly understand that all the variables involved reside in that data frame? Yes. Yes, it would. Fortunately, R has tools that will let you do just that.
3.9.1 *Ceci n’est pas une pipe*

The `magrittr` package\(^8\) adds a set of tools called *pipes* to R. Pipes are operators that let you improve your code’s readability and restructure your code so that it is read from the left to the right instead of from the inside out. Let’s start by installing the package:

```
install.packages("magrittr")
```

Now, let’s say that we are interested in finding out what the mean wind speed (in m/s rather than mph) on hot days (temperature above 80, say) in the `airquality` data is, aggregated by month. We could do something like this:

```
# Extract hot days:
airquality2 <- airquality[airquality$Temp > 80 , ]
# Convert wind speed to m/s:
airquality2$Wind <- airquality2$Wind * 0.44704
# Compute mean wind speed for each month:
hot_wind_means <- aggregate(Wind ~ Month,
data = airquality2,
FUN = mean)
```

There is nothing wrong with this code per se. We create a copy of `airquality` (because we don’t want to change the original data), change the units of the wind speed, and then compute the grouped means. A downside is that we end up with a copy of `airquality` that we maybe won’t need again. We could avoid that by putting all the operations inside of `aggregate`:

```
# More compact:
hot_wind_means <- aggregate(Wind*0.44704 ~ Month,
data = airquality[airquality$Temp > 80 , ],
FUN = mean)
```

The problem with this is that it is a little difficult to follow because we have to read the code from the inside out. When we run the code, R will first extract the hot days, then convert the wind speed to m/s, and then compute the grouped means - so the operations happen in an order that is the opposite of the order in which we wrote them.

`magrittr` introduces a new operator, `%>%`, called a *pipe*, which can be used to chain functions together. Calls that you would otherwise write as

```
new_variable <- function_2(function_1(your_data))
```

can be written as

```
your_data %>% function_1 %>% function_2 -> new_variable
```

\(^8\)Arguably the best-named R package.
so that the operations are written in the order they are performed. Some prefer the
former style, which is more like mathematics, but many prefer the latter, which is
more like natural language (particularly for those of us who are used to reading from
left to right).

Three operations are required to solve the airquality wind speed problem:

1. Extract the hot days,
2. Convert the wind speed to m/s,
3. Compute the grouped means.

Where before we used function-less operations like `airquality2$Wind <-
airquality2$Wind * 0.44704`, we would now require functions that carried
out the same operations if we wanted to solve this problem using pipes.

A function that lets us extract the hot days is `subset`:

```
subset(airquality, Temp > 80)
```

The `magrittr` function `inset` lets us convert the wind speed:

```
library(magrittr)
inset(airquality, "Wind", value = airquality$Wind * 0.44704)
```

And finally, `aggregate` can be used to compute the grouped means. We could use
these functions step-by-step:

```
# Extract hot days:
airquality2 <- subset(airquality, Temp > 80)
# Convert wind speed to m/s:
airquality2 <- inset(airquality2, "Wind",
                     value = airquality2$Wind * 0.44704)
# Compute mean wind speed for each month:
hot_wind_means <- aggregate(Wind ~ Month, data = airquality2,
                             FUN = mean)
```

But, because we have functions to perform the operations, we can instead use `%>%`
pipes to chain them together in a *pipeline*. Pipes automatically send the output from
the previous function as the first argument to the next, so that the data flows from
left to right, which make the code more concise. They also let us refer to the output
from the previous function as `.`, which saves even more space. The resulting code is:

```
airquality %>%
  subset(Temp > 80) %>%
  inset("Wind", value = .$Wind * 0.44704) %>%
  aggregate(Wind ~ Month, data = ., FUN = mean) ->
  hot_wind_means
```

You can read the `%>%` operator as *then*: take the airquality data, *then* subset it,
then convert the Wind variable, then compute the grouped means. Once you wrap
your head around the idea of reading the operations from left to right, this code is
arguably clearer and easier to read. Note that we used the right-assignment operator
\texttt{\textgreater{}=} to assign the result to \texttt{hot_wind_means}, to keep in line with the idea that the
data flows from the left to the right.

3.9.2 Aliases and placeholders

In the remainder of the book, we will use pipes in some situations where they make
the code easier to write or read. Pipes don’t always make code easier to read though,
as can be seen if we use them to compute \(\exp(\log(2))\):

```r
# Standard solution:
exppp(log(2))
# magrittr solution:
2 \texttt{\textgreater{}=} \%\% log \texttt{\textgreater{}=} \%\% exp
```

If you need to use binary operators like +, - and \(<\), \texttt{magrittr} has a number of \texttt{aliases}
that you can use. For instance, \texttt{add} works as an alias for +:

```r
x \texttt{\textleft{}=} 2
exp(x \texttt{\textleft{}=} 2)
x \texttt{\textgreater{}=} \%\% add(2) \texttt{\textgreater{}=} \%\% exp
```

Here are a few more examples:

```r
x \texttt{\textleft{}=} 2

<table>
<thead>
<tr>
<th>Base solution</th>
<th>magrittr solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp(x \texttt{\textleft{}=} 2);</td>
<td>x \texttt{\textgreater{}=} %% subtract(2) \texttt{\textgreater{}=} %% exp</td>
</tr>
<tr>
<td>exp(x \texttt{\texttimes{} 2});</td>
<td>x \texttt{\textgreater{}=} %% multiply_by(2) \texttt{\textgreater{}=} %% exp</td>
</tr>
<tr>
<td>exp(x \texttt{\textdiv{} 2});</td>
<td>x \texttt{\textgreater{}=} %% divide_by(2) \texttt{\textgreater{}=} %% exp</td>
</tr>
<tr>
<td>exp(x\texttt{\textasciicircum{} 2});</td>
<td>x \texttt{\textgreater{}=} %% raise_to_power(2) \texttt{\textgreater{}=} %% exp</td>
</tr>
<tr>
<td>head(airquality[,1:4]);</td>
<td>airquality %% extract(,1:4) %% head</td>
</tr>
<tr>
<td>airquality$Temp[1:5];</td>
<td>airquality %%</td>
</tr>
<tr>
<td></td>
<td>use_series(Temp) %% extract(1:5)</td>
</tr>
</tbody>
</table>
```

In simple cases like these it is usually preferable to use the base R solution - the
point here is that if you need to perform this kind of operation inside a pipeline, the
aliases make it easy to do so. For a complete list of aliases, see \texttt{?extract}.

If the function does not take the output from the previous function as its first argu-
ment, you can use \texttt{.} as a placeholder, just as we did in the \texttt{airquality} problem. Here is another example:

```r
cat(paste("The current time is ", Sys.time()))
Sys.time() \%\% paste("The current time is", ,) \%\% cat
```

If the data only appears inside parentheses, you need to wrap the function in curly
brackets {}, or otherwise %>% will try to pass it as the first argument to the function:

```
airquality %>% cat("Number of rows in data:", nrow(.)) # Doesn't work
airquality %>% {cat("Number of rows in data:", nrow(.))} # Works!
```

In addition to the `magrittr` pipes, from version 4.1 R also offers a native pipe, |>,
which can be used in lieu of %>% without loading any packages. Nevertheless, we'll use
%>% pipes in the remainder of the book, partially because they are more commonly
used (meaning that you are more likely to encounter them when looking at other
people's code), and partially because `magrittr` also offers some other useful pipe
operators. You'll see plenty of examples of how pipes can be used in Chapters 5-9,
and learn about other pipe operators in Section 6.2.

~

Exercise 3.14. Rewrite the following function calls using pipes, with `x <- 1:8`:
1. `sqrt(mean(x))`
2. `mean(sqrt(x))`
3. `sort(x^2-5)[1:2]`

Exercise 3.15. Using the `bookstore` data:

```
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
purchase <- c(20, 59, 2, 12, 22, 160, 34, 34, 29)
visit_length <- c(5, 2, 20, 22, 12, 31, 9, 10, 11)
bookstore <- data.frame(age, purchase, visit_length)
```

Add a new variable `rev_per_minute` which is the ratio between purchase and the
visit length, using a pipe.

3.10 Flavours of R: base and tidyverse

R is a programming language, and just like any language, it has different dialects.
When you read about R online, you'll frequently see people mentioning the words
"base" and "tidyverse". These are the two most common dialects of R. Base R is
just that, R in its purest form. The tidyverse is a collection of add-on packages for
working with different types of data. The two are fully compatible, and you can
mix and match as much as you like. Both ggplot2 and magrittr are part of the
tidyverse.

In recent years, the tidyverse has been heavily promoted as being “modern” R which
"makes data science faster, easier and more fun". You should believe the hype. The
tidyverse is marvellous. But if you only learn tidyverse R, you will miss out on
much of what R has to offer. Base R is just as marvellous, and can definitely make
data science as fast, easy and fun as the tidyverse. Besides, nobody uses just base
R anyway - there are a ton of non-tidyverse packages that extend and enrich R in
exciting new ways. Perhaps “extended R” or “superpowered R” would be better
names for the non-tidyverse dialect.

Anyone who tells you to just learn one of these dialects is wrong. Both are great,
they work extremely well together, and they are similar enough that you shouldn’t
limit yourself to just mastering one of them. This book will show you both base
R and tidyverse solutions to problems, so that you can decide for yourself which is
faster, easier, and more fun.

A defining property of the tidyverse is that there are separate functions for everything,
which is perfect for code that relies on pipes. In contrast, base R uses fewer functions,
but with more parameters, to perform the same tasks. If you use tidyverse solutions
there is a good chance that there exists a function which performs exactly the task
you’re going to do with its default settings. This is great (once again, especially if
you want to use pipes), but it means that there are many more functions to master
for tidyverse users, whereas you can make do with much fewer in base R. You will
spend more time looking up function arguments when working with base R (which
fortunately is fairly straightforward using the ? documentation), but on the other
hand, looking up arguments for a function that you know the name of is easier than
finding a function that does something very specific that you don’t know the name
of. There are advantages and disadvantages to both approaches.

3.11 Ethics and good statistical practice

Throughout this book, there will be sections devoted to ethics. Good statistical prac-
tice is intertwined with good ethical practice. Both require transparent assumptions,
reproducible results, and valid interpretations.

One of the most commonly cited ethical guidelines for statistical work is The Amer-
ican Statistical Association’s Ethical Guidelines for Statistical Practice (Committee
on Professional Ethics of the American Statistical Association, 2018), a shortened
version of which is presented below. The full ethical guidelines are available at
https://www.amstat.org/ASA/Your-Career/Ethical-Guidelines-for-Statistical-
Practice.aspx

- **Professional Integrity and Accountability.** The ethical statistician uses
 methodology and data that are relevant and appropriate; without favoritism
 or prejudice; and in a manner intended to produce valid, interpretable, and
 reproducible results. The ethical statistician does not knowingly accept work
 for which he/she is not sufficiently qualified, is honest with the client about

9The excerpt is from the version of the guidelines dated April 2018, and presented here with
permission from the ASA.
any limitation of expertise, and consults other statisticians when necessary or
in doubt. It is essential that statisticians treat others with respect.

- **Integrity of data and methods.** The ethical statistician is candid about
 any known or suspected limitations, defects, or biases in the data that may
 affect the integrity or reliability of the statistical analysis. Objective and valid
 interpretation of the results requires that the underlying analysis recognizes
 and acknowledges the degree of reliability and integrity of the data.

- **Responsibilities to Science/Public/Funder/Client.** The ethical statistician
 supports valid inferences, transparency, and good science in general, keeping
 the interests of the public, funder, client, or customer in mind (as well as
 professional colleagues, patients, the public, and the scientific community).

- **Responsibilities to Research Subjects.** The ethical statistician protects
 and respects the rights and interests of human and animal subjects at all stages
 of their involvement in a project. This includes respondents to the census or to
 surveys, those whose data are contained in administrative records, and subjects
 of physically or psychologically invasive research.

- **Responsibilities to Research Team Colleagues.** Science and statistical
 practice are often conducted in teams made up of professionals with different
 professional standards. The statistician must know how to work ethically in
 this environment.

- **Responsibilities to Other Statisticians or Statistics Practitioners.** The
 practice of statistics requires consideration of the entire range of possible ex-
 planations for observed phenomena, and distinct observers drawing on their
 own unique sets of experiences can arrive at different and potentially diverging
 judgments about the plausibility of different explanations. Even in adversarial
 settings, discourse tends to be most successful when statisticians treat one an-
 other with mutual respect and focus on scientific principles, methodology, and
 the substance of data interpretations.

- **Responsibilities Regarding Allegations of Misconduct.** The ethical
 statistician understands the differences between questionable statistical, sci-
 entific, or professional practices and practices that constitute misconduct. The
 ethical statistician avoids all of the above and knows how each should be han-
 dled.

- **Responsibilities of Employers, Including Organizations, Individu-
 als, Attorneys, or Other Clients Employing Statistical Practition-
 ers.** Those employing any person to analyze data are implicitly relying on the
 profession’s reputation for objectivity. However, this creates an obligation on
 the part of the employer to understand and respect statisticians’ obligation of
 objectivity.

Similar ethical guidelines for statisticians have been put forward by the International
Exercise 3.16. Discuss the following. In the introduction to American Statistical Association’s *Ethical Guidelines for Statistical Practice*, it is stated that “using statistics in pursuit of unethical ends is inherently unethical”. What is considered unethical depends on social, moral, political, and religious values, and ultimately you must decide for yourself what you consider to be unethical ends. Which (if any) of the following do you consider to be unethical?

1. Using statistical analysis to help a company that harm the environment through their production processes. Does it matter to you what the purpose of the analysis is?
2. Using statistical analysis to help a tobacco or liquor manufacturing company. Does it matter to you what the purpose of the analysis is?
3. Using statistical analysis to help a bank identify which loan applicants that are likely to default on their loans.
4. Using statistical analysis of social media profiles to identify terrorists.
5. Using statistical analysis of social media profiles to identify people likely to protest against the government.
6. Using statistical analysis of social media profiles to identify people to target with political adverts.
7. Using statistical analysis of social media profiles to target ads at people likely to buy a bicycle.
8. Using statistical analysis of social media profiles to target ads at people likely to gamble at a new online casino. Does it matter to you if it’s an ad for the casino or for help for gambling addiction?
Chapter 4

Exploratory data analysis and unsupervised learning

Exploratory data analysis (EDA) is a process in which we summarise and visually explore a dataset. An important part of EDA is unsupervised learning, which is a collection of methods for finding interesting subgroups and patterns in our data. Unlike statistical hypothesis testing, which is used to reject hypotheses, EDA can be used to generate hypotheses (which can then be confirmed or rejected by new studies). Another purpose of EDA is to find outliers and incorrect observations, which can lead to a cleaner and more useful dataset. In EDA we ask questions about our data and then try to answer them using summary statistics and graphics. Some questions will prove to be important, and some will not. The key to finding important questions is to ask a lot of questions. This chapter will provide you with a wide range of tools for question-asking.

After working with the material in this chapter, you will be able to use R to:

- Create reports using R Markdown,
- Customise the look of your plots,
- Visualise the distribution of a variable,
- Create interactive plots,
- Detect and label outliers,
- Investigate patterns in missing data,
- Visualise trends,
- Plot time series data,
- Visualise multiple variables at once using scatterplot matrices, correlograms and bubble plots,
- Visualise multivariate data using principal component analysis,
- Use unsupervised learning techniques for clustering,
• Use factor analysis to find latent variables in your data.

4.1 Reports with R Markdown

R Markdown files can be used to create nicely formatted documents using R, that are easy to export to other formats, like HTML, Word or pdf. They allow you to mix R code with results and text. They can be used to create reproducible reports that are easy to update with new data, because they include the code for making tables and figures. Additionally, they can be used as notebooks for keeping track of your work and your thoughts as you carry out an analysis. You can even use them for writing books - in fact, this entire book was written using R Markdown.

It is often a good idea to use R Markdown for exploratory analyses, as it allows you to write down your thoughts and comments as the analysis progresses, as well as to save the results of the exploratory journey. For that reason, we’ll start this chapter by looking at some examples of what you can do using R Markdown. According to your preference, you can use either R Markdown or ordinary R scripts for the analyses in the remainder of the chapter. The R code used is the same and the results are identical, but if you use R Markdown, you can also save the output of the analysis in a nicely formatted document.

4.1.1 A first example

When you create a new R Markdown document in RStudio by clicking **File > New File > R Markdown** in the menu, a document similar to that below is created:

```---
title: "Untitled"
author: "Måns Thulin"
date: "10/20/2020"
output: html_document
---

```
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see <http://rmarkdown.rstudio.com>.

When you click the **Knit** button a document will be generated that
includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```r
# Summary of car dataset
summary(cars)
```

Including Plots

You can also embed plots, for example:

```r
# Plot of pressure data without printing R code
plot(pressure)
```

Note that the `echo = FALSE` parameter was added to the code chunk to prevent printing of the R code that generated the plot.

Press the Knit button at the top of the Script panel to create an HTML document using this Markdown file. It will be saved in the same folder as your Markdown file. Once the HTML document has been created, it will open so that you can see the results. You may have to install additional packages for this to work, in which case RStudio will prompt you.

Now, let’s have a look at what the different parts of the Markdown document do. The first part is called the document header or YAML header. It contains information about the document, including its title, the name of its author, and the date on which it was first created:

```yaml
---
title: "Untitled"
author: "Måns Thulin"
date: "10/20/2020"
output: html_document
---
```

The part that says `output: html_document` specifies what type of document should be created when you press Knit. In this case, it’s set to `html_document`, meaning that an HTML document will be created. By changing this to `output: word_document`, you can create a .docx Word document instead. By changing it to `output: pdf_document`, you can create a .pdf document using LaTeX (you’ll have to install LaTeX if you haven’t already - RStudio will notify you if that is the case).

The second part sets the default behaviour of code chunks included in the document, specifying that the output from running the chunks should be printed unless otherwise specified:
CHAPTER 4. EXPLORATORY DATA ANALYSIS AND UNSUPERVISED LEARNING

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```

The third part contains the first proper section of the document. First, a header is created using `##`. Then there is some text with formatting: `< >` is used to create a link and `**` is used to get **bold text**. Finally, there is a code chunk, delimited by `````

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see <http://rmarkdown.rstudio.com>.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```{r cars}
summary(cars)
```

The fourth and final part contains another section, this time with a figure created using R. A setting is added to the code chunk used to create the figure, which prevents the underlying code from being printed in the document:

```{r pressure, echo=FALSE}
plot(pressure)
```

```
Note that the `echo = FALSE` parameter was added to the code chunk to prevent printing of the R code that generated the plot.

In the next few sections, we will look at how formatting and code chunks work in R Markdown.

### 4.1.2 Formatting text

To create plain text in a Markdown file, you simply have to write plain text. If you wish to add some formatting to your text, you can use the following:
4.1. **REPORTS WITH R MARKDOWN**

- _italics_ or *italics*: to create text in *italics*.
- __bold__ or **bold**: to create **bold** text.
- [linked text](http://www.modernstatisticswithr.com): to create linked text.
- `code`: to include inline code in your document.
- \(a^2 + b^2 = c^2\): to create inline equations like \(a^2 + b^2 = c^2\) using LaTeX syntax.
- $$$a^2 + b^2 = c^2$$$: to create a centred equation on a new line, like
  \[a^2 + b^2 = c^2\]

To add headers and subheaders, and to divide your document into section, start a new line with #’s as follows:

```
Header text
Sub-header text
Sub-sub-header text
...and so on.
```

### 4.1.3 Lists, tables, and images

To create a bullet list, you can use * as follows. Note that you need a blank line between your list and the previous paragraph to begin a list.

```
* Item 1
* Item 2
 + Sub-item 1
 + Sub-item 2
* Item 3
```
yielding:

- Item 1
- Item 2
  - Sub-item 1
  - Sub-item 2
- Item 3

To create an ordered list, use:

```
1. First item
2. Second item
 i) Sub-item 1
 ii) Sub-item 2
3. Item 3
```
yielding:

1. First item
2. Second item
   i) Sub-item 1
   ii) Sub-item 2

3. Item 3

To create a table, use | and --------- as follows:

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td>More content</td>
</tr>
<tr>
<td>Even more</td>
<td>And some here</td>
</tr>
<tr>
<td>Even more?</td>
<td>Yes!</td>
</tr>
</tbody>
</table>

which yields the following output:

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td>More content</td>
</tr>
<tr>
<td>Even more</td>
<td>And some here</td>
</tr>
<tr>
<td>Even more?</td>
<td>Yes!</td>
</tr>
</tbody>
</table>

To include an image, use the same syntax as when creating linked text with a link to the image path (either local or on the web), but with a ! in front:

![Link](https://www.r-project.org/Rlogo.png)

![Put some text here if you want a caption](https://www.r-project.org/Rlogo.png)

which yields the following:
4.1.4 Code chunks

The simplest way to define a code chunk is to write:

```r
plot(pressure)
```

In RStudio, Ctrl+Alt+I is a keyboard shortcut for inserting this kind of code chunk.

We can add a name and a caption to the chunk, which lets us reference objects created by the chunk:

```r
pressureplot, fig.cap = "Plot of the pressure data."}
```

As we can see in Figure \ref{fig:cars-plot}, the relationship between temperature and pressure resembles a banana.

This yields the following output:

```
plot(pressure)
```

As we can see in Figure 4.2, the relationship between temperature and pressure resembles a banana.

In addition, you can add settings to the chunk header to control its behaviour. For
instance, you can include a code chunk without running it by adding `echo = FALSE`:

```
```r, eval = FALSE}
plot(pressure)
```

You can add the following settings to your chunks:

- `echo = FALSE` to run the code without printing it,
- `eval = FALSE` to print the code without running it,
- `results = "hide"` to hide printed output,
- `fig.show = "hide"` to hide plots,
- `warning = FALSE` to suppress warning messages from being printed in your document,
- `message = FALSE` to suppress other messages from being printed in your document,
- `include = FALSE` to run a chunk without showing the code or results in the document,
- `error = TRUE` to continue running your R Markdown document even if there is an error in the chunk (by default, the documentation creation stops if there is an error).

Data frames can be printed either as in the Console or as a nicely formatted table. For example,
Table 4.2: Some data I found.

<table>
<thead>
<tr>
<th></th>
<th>Ozone</th>
<th>Solar.R</th>
<th>Wind</th>
<th>Temp</th>
<th>Month</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41</td>
<td>190</td>
<td>7.4</td>
<td>67</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>118</td>
<td>8.0</td>
<td>72</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>149</td>
<td>12.6</td>
<td>74</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>313</td>
<td>11.5</td>
<td>62</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>NA</td>
<td>NA</td>
<td>14.3</td>
<td>56</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
<td>NA</td>
<td>14.9</td>
<td>66</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

```r
head(airquality)
```

yields:

```
## Ozone Solar.R Wind Temp Month Day
## 1 41 190 7.4 67 5 1
## 2 36 118 8.0 72 5 2
## 3 12 149 12.6 74 5 3
## 4 18 313 11.5 62 5 4
## 5 NA NA 14.3 56 5 5
## 6 28 NA 14.9 66 5 6
```

whereas

```r
echo = FALSE}
knitr::kable(
  head(airquality),
  caption = "Some data I found."
)
```

yields the table below.

Further help and documentation for R Markdown can be found through the RStudio menus, by clicking Help > Cheatsheets > R Markdown Cheat Sheet or Help > Cheatsheets > R Markdown Reference Guide.

4.2 Customising ggplot2 plots

We’ll be using ggplot2 a lot in this chapter, so before we get started with exploratory analyses, we’ll take some time to learn how we can customise the look of ggplot2-plots.

Consider the following facetted plot from Section 2.7.4:
library(ggplot2)

ggplot(msleep, aes(brainwt, sleep_total)) +
 geom_point() +
 xlab("Brain weight (logarithmic scale)") +
 ylab("Total sleep time") +
 scale_x_log10() +
 facet_wrap(~ vore)

It looks nice, sure, but there may be things that you’d like to change. Maybe you’d like the plot’s background to be white instead of grey, or perhaps you’d like to use a different font. These, and many other things, can be modified using *themes*.

4.2.1 Using themes

`ggplot2` comes with a number of basic themes. All are fairly similar, but differ in things like background colour, grids and borders. You can add them to your plot using `theme_themeName`, where `themeName` is the name of the theme\(^1\). Here are some examples:

```r
p <- ggplot(msleep, aes(brainwt, sleep_total, colour = vore)) +
  geom_point() +
  xlab("Brain weight (logarithmic scale)") +
  ylab("Total sleep time") +
  scale_x_log10() +
  facet_wrap(~ vore)

# Create plot with different themes:
p + theme_grey() # The default theme
p + theme_bw()
p + theme_linedraw()
p + theme_light()
p + theme_dark()
p + theme_minimal()
p + theme_classic()
```

There are several packages available that contain additional themes. Let’s download a few:

```r
install.packages("ggthemes")
library(ggthemes)

# Create plot with different themes from ggthemes:
p + theme_tufte() # Minimalist Tufte theme
```

\(^1\)See `?theme_grey` for a list of available themes.
4.2. CUSTOMISING GGPILOT2 PLOTS

```r
p + theme_wsj() # Wall Street Journal
p + theme_solarized() + scale_colour_solarized() # Solarized colours

install.packages("hrbrthemes")
library(hrbrthemes)

# Create plot with different themes from hrbrthemes:
p + theme_ipsum() # Ipsum theme
p + theme_ft_rc() # Suitable for use with dark RStudio themes
p + theme_modern_rc() # Suitable for use with dark RStudio themes
```

4.2.2 Colour palettes

Unlike e.g. background colours, the colour palette, i.e. the list of colours used for plotting, is not part of the theme that you’re using. Next, we’ll have a look at how to change the colour palette used for your plot.

Let’s start by creating a ggplot object:

```r
p <- ggplot(msleep, aes(brainwt, sleep_total, colour = vore)) +
  geom_point() +
  xlab("Brain weight (logarithmic scale)") +
  ylab("Total sleep time") +
  scale_x_log10()
```

You can change the colour palette using `scale_colour_brewer`. Three types of colour palettes are available:

- **Sequential palettes**: that range from a colour to white. These are useful for representing ordinal (i.e. ordered) categorical variables and numerical variables.
- **Diverging palettes**: these range from one colour to another, with white in between. Diverging palettes are useful when there is a meaningful middle or 0 value (e.g. when your variables represent temperatures or profit/loss), which can be mapped to white.
- **Qualitative palettes**: which contain multiple distinct colours. These are useful for nominal (i.e. with no natural ordering) categorical variables.

See `?scale_colour_brewer` or http://www.colorbrewer2.org for a list of the available palettes. Here are some examples:

```r
# Sequential palette:
p + scale_colour_brewer(palette = "OrRd")
# Diverging palette:
p + scale_colour_brewer(palette = "RdBu")
```
Qualitative palette:
P + scale_colour_brewer(palette = "Set1")

In this case, because vorc is a nominal categorical variable, a qualitative palette is arguably the best choice.

4.2.3 Theme settings

The point of using a theme is that you get a combination of colours, fonts and other choices that are supposed to go well together, meaning that you don’t have to spend too much time picking combinations. But if you like, you can override the default options and customise any and all parts of a theme.

The theme controls all visual aspects of the plot not related to the aesthetics. You can change the theme settings using the `theme` function. For instance, you can use `theme` to remove the legend or change its position:

- **No legend:**
P + theme(legend.position = "none")

- **Legend below figure:**
P + theme(legend.position = "bottom")

- **Legend inside plot:**
P + theme(legend.position = c(0.9, 0.7))

In the last example, the vector c(0.9, 0.7) gives the relative coordinates of the legend, with c(0, 0) representing the bottom left corner of the plot and c(1, 1) the upper right corner. Try to change the coordinates to different values between 0 and 1 and see what happens.

`theme` has a lot of other settings, including for the colours of the background, the grid and the text in the plot. Here are a few examples that you can use as starting point for experimenting with the settings:

P + theme(
 panel.grid.major = element_line(colour = "black"),
 panel.grid.minor = element_line(colour = "purple",
 linetype = "dotted"),
 panel.background = element_rect(colour = "red", size = 2),
 plot.background = element_rect(fill = "yellow"),
 axis.text = element_text(family = "mono", colour = "blue"),
 axis.title = element_text(family = "serif", size = 14))

To find a complete list of settings, see ?theme, ?element_line (lines), ?element_rect (borders and backgrounds), ?element_text (text), and element_blank (for suppressing plotting of elements). As before, you can use colors() to get a list of
4.3 Exploring Distributions

It is often useful to visualise the distribution of a numerical variable. Comparing the distributions of different groups can lead to important insights. Visualising distributions is also essential when checking assumptions used for various statistical tests (sometimes called *initial data analysis*). In this section we will illustrate how this can be done using the `diamonds` data from the `ggplot2` package, which you started to explore in Chapter 2.

4.3.1 Density plots and frequency polygons

We already know how to visualise the distribution of the data by dividing it into bins and plotting a histogram:

```r
library(ggplot2)
ggplot(diamonds, aes(carat)) +
  geom_histogram(colour = "black")
```

A similar plot is created using frequency polygons, which uses lines instead of bars to display the counts in the bins:

```r
ggplot(diamonds, aes(carat)) +
  geom_freqpoly()
```

An advantage with frequency polygons is that they can be used to compare groups, e.g. diamonds with different cuts, without facetting:

```r
ggplot(diamonds, aes(carat, colour = cut)) +
  geom_freqpoly()
```
It is clear from this figure that there are more diamonds with ideal cuts than diamonds with fair cuts in the data. The polygons have roughly the same shape, except perhaps for the polygon for diamonds with fair cuts.

In some cases, we are more interested in the shape of the distribution than in the actual counts in the different bins. Density plots are similar to frequency polygons but show an estimate of the density function of the underlying random variable. These estimates are smooth curves that are scaled so that the area below them is 1 (i.e. scaled to be proper density functions):

```r
ggplot(diamonds, aes(carat, colour = cut)) + geom_density()
```

From this figure, it becomes clear that low-carat diamonds tend to have better cuts, which wasn’t obvious from the frequency polygons. However, the plot does not provide any information about how common different cuts are. Use density plots if you’re more interested in the shape of a variable’s distribution, and frequency polygons if you’re more interested in counts.

Exercise 4.2. Using the density plot created above and the documentation for `geom_density`, do the following:

1. Increase the smoothness of the density curves.
2. Fill the area under the density curves with the same colour as the curves themselves.
3. Make the colours that fill the areas under the curves transparent.
4. The figure still isn’t that easy to interpret. Install and load the `ggridges` package, an extension of `ggplot2` that allows you to make so-called ridge plots (density plots that are separated along the y-axis, similar to facetting). Read the documentation for `geom_density_ridges` and use it to make a ridge plot of diamond prices for different cuts.

Exercise 4.3. Return to the histogram created by `ggplot(diamonds, aes(carat)) + geom_histogram()` above. As there are very few diamonds with carat greater than 3, cut the x-axis at 3. Then decrease the bin width to 0.01. Do any interesting patterns emerge?

4.3.2 Asking questions

Exercise 4.3 causes us to ask why diamonds with carat values that are multiples of 0.25 are more common than others. Perhaps the price is involved? Unfortunately, a plot of carat versus price is not that informative:
4.3. EXPLORING DISTRIBUTIONS

```r
ggplot(diamonds, aes(carat, price)) + geom_point(size = 0.05)
```

Maybe we could compute the average price in each bin of the histogram? In that case, we need to extract the bin breaks from the histogram somehow. We could then create a new categorical variable using the breaks with `cut` (as we did in Exercise 3.7). It turns out that extracting the bins is much easier using base graphics than `ggplot2`, so let’s do that:

```r
# Extract information from a histogram with bin width 0.01, which corresponds to 481 breaks:
carat_br <- hist(diamonds$carat, breaks = 481, right = FALSE, plot = FALSE)

# Of interest to us are:
# carat_br$breaks, which contains the breaks for the bins
# carat_br$mid, which contains the midpoints of the bins
# (useful for plotting!)

# Create categories for each bin:
diamonds$carat_cat <- cut(diamonds$carat, 481, right = FALSE)
```

We now have a variable, `carat_cat`, that shows to which bin each observation belongs. Next, we’d like to compute the mean for each bin. This is a grouped summary - mean by category. After we’ve computed the bin means, we could then plot them against the bin midpoints. Let’s try it:

```r
means <- aggregate(price ~ carat_cat, data = diamonds, FUN = mean)
plot(carat_br$mid, means$price)
```

That didn’t work as intended. We get an error message when attempting to plot the results:

```
Error in xy.coords(x, y, xlabel, ylabel, log) :
  'x' and 'y' lengths differ
```

The error message implies that the number of bins and the number of mean values that have been computed differ. But we’ve just computed the mean for each bin, haven’t we? So what’s going on?

By default, `aggregate` ignores groups for which there are no values when computing grouped summaries. In this case, there are a lot of empty bins - there is for instance no observation in the `[4.99,5)` bin. In fact, only 272 out of the 481 bins are non-empty.

We can solve this in different ways. One way is to remove the empty bins. We can do this using the `match` function, which returns the positions of matching values in
two vectors. If we use it with the bins from the grouped summary and the vector containing all bins, we can find the indices of the non-empty bins. This requires the use of the `levels` function, that you’ll learn more about in Section 5.4:

```r
means <- aggregate(price ~ carat_cat, data = diamonds, FUN = mean)
id <- match(means$carat_cat, levels(diamonds$carat_cat))
```

Finally, we’ll also add some vertical lines to our plot, to call attention to multiples of 0.25.

Using base graphics is faster here:

```r
plot(carat_br$mid[id], means$price, cex = 0.5)
# Add vertical lines at multiples of 0.25:
abline(v = c(0.5, 0.75, 1, 1.25, 1.5))
```

But we can of course stick to `ggplot2` if we like:

```r
library(ggplot2)
d2 <- data.frame(
    bin = carat_br$mid[id],
    mean = means$price
)ggplot(d2, aes(bin, mean)) + geom_point() + geom_vline(xintercept = c(0.5, 0.75, 1, 1.25, 1.5))
# geom_vline add vertical lines at multiples of 0.25
```

It appears that there are small jumps in the prices at some of the 0.25-marks. This explains why there are more diamonds just above these marks than just below.

The above example illustrates three crucial things regarding exploratory data analysis:

- Plots (in our case, the histogram) often lead to new questions.
- Often, we must transform, summarise or otherwise manipulate our data to answer a question. Sometimes this is straightforward and sometimes it means diving deep into R code.
- Sometimes the thing that we’re trying to do doesn’t work straight away. There is almost always a solution though (and oftentimes more than one!). The more you work with R, the more problem-solving tricks you will learn.
4.3.3 Violin plots

Density curves can also be used as alternatives to boxplots. In Exercise 2.16, you created boxplots to visualise price differences between diamonds of different cuts:

```r
ggplot(diamonds, aes(cut, price)) + geom_boxplot()
```

Instead of using a boxplot, we can use a violin plot. Each group is represented by a “violin”, given by a rotated and duplicated density plot:

```r
ggplot(diamonds, aes(cut, price)) + geom_violin()
```

Compared to boxplots, violin plots capture the entire distribution of the data rather than just a few numerical summaries. If you like numerical summaries (and you should!) you can add the median and the quartiles (corresponding to the borders of the box in the boxplot) using the `draw_quantiles` argument:

```r
ggplot(diamonds, aes(cut, price)) + geom_violin(draw_quantiles = c(0.25, 0.5, 0.75))
```

Exercise 4.4. Using the first boxplot created above, i.e. `ggplot(diamonds, aes(cut, price)) + geom_violin()`, do the following:

1. Add some colour to the plot by giving different colours to each violin.
2. Because the categories are shown along the x-axis, we don’t really need the legend. Remove it.
3. Both boxplots and violin plots are useful. Maybe we can have the best of both worlds? Add the corresponding boxplot inside each violin. Hint: the `width` and `alpha` arguments in `geom_boxplot` are useful for creating a nice-looking figure here.
4. Flip the coordinate system to create horizontal violins and boxes instead.

4.3.4 Combine multiple plots into a single graphic

When exploring data with many variables, you’ll often want to make the same kind of plot (e.g. a violin plot) for several variables. It will frequently make sense to place these side-by-side in the same plot window. The `patchwork` package extends `ggplot2` by letting you do just that. Let’s install it:

```r
install.packages("patchwork")
```

To use it, save each plot as a plot object and then add them together:
You can also arrange the plots on multiple lines, with different numbers of plots on each line. This is particularly useful if you are combining different types of plots in a single plot window. In this case, you separate plots that are same line by | and mark the beginning of a new line with /:

Create two more plot objects:
plot3 <- ggplot(diamonds, aes(cut, depth, fill = cut)) +
 geom_violin() +
 theme(legend.position = "none")
plot4 <- ggplot(diamonds, aes(carat, fill = cut)) +
 geom_density(alpha = 0.5) +
 theme(legend.position = c(0.9, 0.6))

One row with three plots and one row with a single plot:
(plot1 | plot2 | plot3) / plot4

One column with three plots and one column with a single plot:
(plot1 / plot2 / plot3) | plot4

(You may need to enlarge your plot window for this to look good!)

4.4 Outliers and missing data

4.4.1 Detecting outliers

Both boxplots and scatterplots are helpful in detecting deviating observations - often called outliers. Outliers can be caused by measurement errors or errors in the data input but can also be interesting rare cases that can provide valuable insights about the process that generated the data. Either way, it is often of interest to detect outliers, for instance because that may influence the choice of what statistical tests to use.

Let’s return to the scatterplot of diamond carats versus prices:
4.4. OUTLIERS AND MISSING DATA

There are some outliers which we may want to study further. For instance, there is a surprisingly cheap 5 carat diamond, and some cheap 3 carat diamonds. But how can we identify those points?

One option is to use the plotly package to make an interactive version of the plot, where we can hover interesting points to see more information about them. Start by installing it:

```r
install.packages("plotly")
```

To use plotly with a `ggplot` graphic, we store the graphic in a variable and then use it as input to the `ggplotly` function. The resulting (interactive!) plot takes a little longer than usual to load. Try hovering the points:

```r
myPlot <- ggplot(diamonds, aes(carat, price)) + geom_point()
library(plotly)
ggplotly(myPlot)
```

By default, plotly only shows the carat and price of each diamond. But we can add more information to the box by adding a text aesthetic:

```r
myPlot <- ggplot(diamonds, aes(carat, price, text = paste("Row:", rownames(diamonds)))) + geom_point()
ggplotly(myPlot)
```

We can now find the row numbers of the outliers visually, which is very useful when exploring data.

~

Exercise 4.5. The variables x and y in the diamonds data describe the length and width of the diamonds (in mm). Use an interactive scatterplot to identify outliers in these variables. Check prices, carat and other information and think about if any of the outliers can be due to data errors.

2Note that it is not just the prices nor just the carats of these diamonds that make them outliers, but the unusual combinations of prices and carats!
4.4.2 Labelling outliers

Interactive plots are great when exploring a dataset but are not always possible to use in other contexts, e.g. for printed reports and some presentations. In these other cases, we can instead annotate the plot with notes about outliers. One way to do this is to use a geom called `geom_text`.

For instance, we may want to add the row numbers of outliers to a plot. To do so, we use `geom_text` along with a condition that specifies for which points we should add annotations. Like in Section 3.2.3, if we e.g. wish to add row numbers for diamonds with carats greater than four, our condition would be `carat > 4`. The `ifelse` function, which we'll look closer at in Section 6.3, is perfect to use here. The syntax will be `ifelse(condition, what text to write if the condition is satisfied, what text to write else)`. To add row names for observations that fulfil the condition but not for other observations, we use `ifelse(condition, rownames(diamonds), "")`. If instead, we wanted to print the price of the diamonds, we’d use `ifelse(condition, price, "")`.

Here are some different examples of conditions used to plot text:

```r
## Using the row number (the 5 carat diamond is on row 27,416)
ggplot(diamonds, aes(carat, price)) +
  geom_point() +
  geom_text(aes(label = ifelse(rownames(diamonds) == 27416,
                              rownames(diamonds), "")),
             hjust = 1.1)
## (hjust=1.1 shifts the text to the left of the point)

## Plot text next to all diamonds with carat>4
ggplot(diamonds, aes(carat, price)) +
  geom_point() +
  geom_text(aes(label = ifelse(carat > 4, rownames(diamonds), "")),
            hjust = 1.1)

## Plot text next to 3 carat diamonds with a price below 7500
ggplot(diamonds, aes(carat, price)) +
  geom_point() +
  geom_text(aes(label = ifelse(carat == 3 & price < 7500,
                              rownames(diamonds), "")),
            hjust = 1.1)
```

Exercise 4.6. Create a static (i.e. non-interactive) scatterplot of x versus y from the `diamonds` data. Label the diamonds with suspiciously high y-values.
4.4. OUTLIERS AND MISSING DATA

4.4.3 Missing data

Like many datasets, the mammal sleep data msleep contains a lot of missing values, represented by `NA` (Not Available) in R. This becomes evident when we have a look at the data:

```r
library(ggplot2)
View(msleep)
```

We can check if a particular observation is missing using the `is.na` function:

```r
is.na(msleep$sleep_rem[4])
is.na(msleep$sleep_rem)
```

We can count the number of missing values for each variable using:

```r
colSums(is.na(msleep))
```

Here, `colSums` computes the sum of `is.na(msleep)` for each column of `msleep` (remember that in summation, `TRUE` counts as 1 and `FALSE` as 0), yielding the number of missing values for each variable. In total, there are 136 missing values in the dataset:

```r
sum(is.na(msleep))
```

You'll notice that `ggplot2` prints a warning in the Console when you create a plot with missing data:

```r
ggplot(msleep, aes(brainwt, sleep_total)) +
  geom_point() +
  scale_x_log10()
```

Sometimes data are missing simply because the information is not yet available (for instance, the brain weight of the mountain beaver could be missing because no one has ever weighed the brain of a mountain beaver). In other cases, data can be missing because something about them is different (for instance, values for a male patient in a medical trial can be missing because the patient died, or because some values only were collected for female patients). Therefore, it is of interest to see if there are any differences in non-missing variables between subjects that have missing data and subjects that don’t.

In msleep, all animals have recorded values for `sleep_total` and `bodywt`. To check if the animals that have missing `brainwt` values differ from the others, we can plot them in a different colour in a scatterplot:

```r
ggplot(msleep, aes(bodywt, sleep_total, colour = is.na(brainwt))) +
  geom_point() +
  scale_x_log10()
```
Exercise 4.7. Create a version of the diamonds dataset where the x value is missing for all diamonds with $x > 9$. Make a scatterplot of carat versus price, with points where the x value is missing plotted in a different colour. How would you interpret this plot?

4.4.4 Exploring data

The nycflights13 package contains data about flights to and from three airports in New York, USA, in 2013. As a summary exercise, we will study a subset of these, namely all flights departing from New York on 1 January that year:

```
install.packages("nycflights13")
library(nycflights13)
flights2 <- flights[flights$month == 1 & flights$day == 1,]
```

Exercise 4.8. Explore the flights2 dataset, focusing on delays and the amount of time spent in the air. Are there any differences between the different carriers? Are there missing data? Are there any outliers?

4.5 Trends in scatterplots

Let’s return to a familiar example - the relationship between animal brain size and sleep times:

```
ggplot(msleep, aes(brainwt, sleep_total)) +
  geom_point() +
  xlab("Brain weight (logarithmic scale)") +
  ylab("Total sleep time") +
  scale_x_log10()
```

There appears to be a decreasing trend in the plot. To aid the eye, we can add a smoothed line by adding a new geom, geom_smooth, to the figure:

```
ggplot(msleep, aes(brainwt, sleep_total)) +
  geom_point() +
  geom_smooth()
```

(If is.na(brainwt) is TRUE then the brain weight is missing in the dataset.) In this case, there are no apparent differences between the animals with missing data and those without.
This technique is useful for bivariate data as well as for time series, which we’ll delve into next.

By default, `geom_smooth` adds a line fitted using either LOESS\(^3\) or GAM\(^4\), as well as the corresponding 95\% confidence interval describing the uncertainty in the estimate. There are several useful arguments that can be used with `geom_smooth`. You will explore some of these in the exercise below.

Exercise 4.9.

Check the documentation for `geom_smooth`. Starting with the plot of brain weight vs. sleep time created above, do the following:

1. Decrease the degree of smoothing for the LOESS line that was fitted to the data. What is better in this case, more or less smoothing?
2. Fit a straight line to the data instead of a non-linear LOESS line.
3. Remove the confidence interval from the plot.
4. Change the colour of the fitted line to red.

4.6 Exploring time series

Before we have a look at time series, you should install four useful packages: `forecast`, `nlme`, `fma` and `fpp2`. The first contains useful functions for plotting time series data, and the latter three contain datasets that we’ll use.

```r
install.packages(c("nlme", "forecast", "fma", "fpp2"), dependencies = TRUE)
```

The a10 dataset contains information about the monthly anti-diabetic drug sales in Australia during the period July 1991 to June 2008. By checking its structure, we see that it is saved as a time series object\(^5\):

```r
library(fpp2)
str(a10)
```

\(^3\)LOESS, LOcally Estimated Scatterplot Smoothing, is a non-parametric regression method that fits a polynomial to local areas of the data.

\(^4\)GAM, Generalised Additive Model, is a generalised linear model where the response variable is a linear function of smooth functions of the predictors.

\(^5\)Time series objects are a special class of vectors, with data sampled at equispaced points in time. Each observation can have a year/date/time associated with it.
ggplot2 requires that data is saved as a data frame in order for it to be plotted. In order to plot the time series, we could first convert it to a data frame and then plot each point using `geom_point`:

```r
a10_df <- data.frame(time = time(a10), sales = a10)
ggplot(a10_df, aes(time, sales)) + geom_point()
```

It is however usually preferable to plot time series using lines instead of points. This is done using a different geom: `geom_line`:

```r
ggplot(a10_df, aes(time, sales)) + geom_line()
```

Having to convert the time series object to a data frame is a little awkward. Luckily, there is a way around this. `ggplot2` offers a function called `autoplot`, that automatically draws an appropriate plot for certain types of data. `forecast` extends this function to time series objects:

```r
library(forecast)
autoplot(a10)
```

We can still add other geoms, axis labels and other things just as before. `autoplot` has simply replaced the `ggplot(data, aes()) + geom` part that would be the first two rows of the `ggplot2` figure, and has implicitly converted the data to a data frame.

Exercise 4.10. Using the `autoplot(a10)` figure, do the following:

1. Add a smoothed line describing the trend in the data. Make sure that it is smooth enough not to capture the seasonal variation in the data.

2. Change the label of the x-axis to “Year” and the label of the y-axis to “Sales ($ million)”.

3. Check the documentation for the `ggtitle` function. What does it do? Use it with the figure.

4. Change the colour of the time series line to red.

4.6.1 Annotations and reference lines

We sometimes wish to add text or symbols to plots, for instance to highlight interesting observations. Consider the following time series plot of daily morning gold prices, based on the `gold` data from the `forecast` package:
4.6. EXPLORING TIME SERIES

There is a sharp spike a few weeks before day 800, which is due to an incorrect value in the data series. We’d like to add a note about that to the plot. First, we wish to find out on which day the spike appears. This can be done by checking the data manually or using some code:

```r
spike_date <- which.max(gold)
```

To add a circle around that point, we add a call to `annotate` to the plot:

```r
autoplot(gold) +
  annotate(geom = "point", x = spike_date, y = gold[spike_date],
            size = 5, shape = 21,
            colour = "red",
            fill = "transparent")
```

`annotate` can be used to annotate the plot with both geometrical objects and text (and can therefore be used as an alternative to `geom_text`).

Exercise 4.11. Using the figure created above and the documentation for `annotate`, do the following:

1. Add the text “Incorrect value” next to the circle.
2. Create a second plot where the incorrect value has been removed.
3. Read the documentation for the geom `geom_hline`. Use it to add a red reference line to the plot, at $y = 400$.

4.6.2 Longitudinal data

Multiple time series with identical time points, known as longitudinal data or panel data, are common in many fields. One example of this is given by the `elecdaily` time series from the `fpp2` package, which contains information about electricity demand in Victoria, Australia during 2014. As with a single time series, we can plot these data using `autoplot`:

```r
library(fpp2)
autoplot(elecdaily)
```

In this case, it is probably a good idea to facet the data, i.e. to plot each series in a different figure:
Exercise 4.12. Make the following changes to the `autoplot(elecdaily, facets = TRUE)

1. Remove the WorkDay variable from the plot (it describes whether or not a given
date is a workday, and while it is useful for modelling purposes, we do not wish
to include it in our figure).

2. Add smoothed trend lines to the time series plots.

4.6.3 Path plots

Another option for plotting multiple time series is path plots. A path plot is a
scatterplot where the points are connected with lines in the order they appear in the
data (which, for time series data, should correspond to time). The lines and points
can be coloured to represent time.

To make a path plot of Temperature versus Demand for the `elecdaily` data, we first
convert the time series object to a data frame and create a scatterplot:

```r
library(fpp2)
ggplot(as.data.frame(elecdaily), aes(Temperature, Demand)) +
geom_point()
```

Next, we connect the points by lines using the `geom_path` geom:

```r
ggplot(as.data.frame(elecdaily), aes(Temperature, Demand)) +
geom_point() +
geom_path()
```

The resulting figure is quite messy. Using colour to indicate the passing of time helps
a little. For this, we need to add the day of the year to the data frame. To get the
values right, we use `nrow`, which gives us the number of rows in the data frame.

```r
elecdaily2 <- as.data.frame(elecdaily)
elecdaily2$day <- 1:nrow(elecdaily2)

ggplot(elecdaily2, aes(Temperature, Demand, colour = day)) +
geom_point() +
geom_path()
```

It becomes clear from the plot that temperatures were the highest at the beginning
of the year and lower in the winter months (July-August).
4.6. EXPLORING TIME SERIES

Exercise 4.13. Make the following changes to the plot you created above:

1. Decrease the size of the points.
2. Add text annotations showing the dates of the highest and lowest temperatures, next to the corresponding points in the figure.

4.6.4 Spaghetti plots

In cases where we’ve observed multiple subjects over time, we often wish to visualise their individual time series together using so-called spaghetti plots. With ggplot2 this is done using the geom_line geom. To illustrate this, we use the Oxboys data from the nlme package, showing the heights of 26 boys over time.

```r
library(nlme)

ggplot(Oxboys, aes(age, height, group = Subject)) +
  geom_point() +
  geom_line()
```

The first two aes arguments specify the x and y-axes, and the third specifies that there should be one line per subject (i.e. per boy) rather than a single line interpolating all points. The latter would be a rather useless figure that looks like this:

```r
ggplot(Oxboys, aes(age, height)) +
  geom_point() +
  geom_line() +
  ggtitle("A terrible plot")
```

Returning to the original plot, if we wish to be able to identify which time series corresponds to which boy, we can add a colour aesthetic:

```r
ggplot(Oxboys, aes(age, height, group = Subject, colour = Subject)) +
  geom_point() +
  geom_line()
```

Note that the boys are ordered by height, rather than subject number, in the legend.

Now, imagine that we wish to add a trend line describing the general growth trend for all boys. The growth appears approximately linear, so it seems sensible to use geom_smooth(method = "lm") to add the trend:

```r
ggplot(Oxboys, aes(age, height, group = Subject, colour = Subject)) +
  geom_point() +
  geom_line() +
  geom_smooth(method = "lm", colour = "red", se = FALSE)
```
Unfortunately, because we have specified in the aesthetics that the data should be grouped by Subject, geom_smooth produces one trend line for each boy. The “problem” is that when we specify an aesthetic in the ggplot call, it is used for all geoms.

~

Exercise 4.14. Figure out how to produce a spaghetti plot of the Oxboys data with a single red trend line based on the data from all 26 boys.

4.6.5 Seasonal plots and decompositions

The forecast package includes a number of useful functions when working with time series. One of them is ggseasonplot, which allows us to easily create a spaghetti plot of different periods of a time series with seasonality, i.e. with patterns that repeat seasonally over time. It works similar to the autoplot function, in that it replaces the ggplot(data, aes) + geom part of the code.

```r
library(forecast)
library(fpp2)
ggseasonplot(a10)
```

This function is very useful when visually inspecting seasonal patterns.

The `year.labels` and `year.labels.left` arguments removes the legend in favour of putting the years at the end and beginning of the lines:

```r
ggseasonplot(a10, year.labels = TRUE, year.labels.left = TRUE)
```

As always, we can add more things to our plot if we like:

```r
ggseasonplot(a10, year.labels = TRUE, year.labels.left = TRUE) +
  ylab("Sales ($ million)") +
  ggtitle("Seasonal plot of anti-diabetic drug sales")
```

When working with seasonal time series, it is common to decompose the series into a seasonal component, a trend component and a remainder. In R, this is typically done using the stl function, which uses repeated LOESS smoothing to decompose the series. There is an autoplot function for stl objects:

```r
autoplot(stl(a10, s.window = 365))
```

This plot can too be manipulated in the same way as other ggplot objects. You can access the different parts of the decomposition as follows:

```r
stl(a10, s.window = 365)$time.series[, "seasonal"]
stl(a10, s.window = 365)$time.series[, "trend"]
stl(a10, s.window = 365)$time.series[, "remainder"]
```
Exercise 4.15. Investigate the writing dataset from the fma package graphically. Make a time series plot with a smoothed trend line, a seasonal plot and an stl-decomposition plot. Add appropriate plot titles and labels to the axes. Can you see any interesting patterns?

4.6.6 Detecting changepoints

The changepoint package contains a number of methods for detecting changepoints in time series, i.e. time points at which either the mean or the variance of the series changes. Finding changepoints can be important for detecting changes in the process underlying the time series. The ggfortify package extends ggplot2 by adding autoplot functions for a variety of tools, including those in changepoint. Let’s install the packages:

```r
install.packages(c("changepoint", "ggfortify"))
```

We can now look at some examples with the anti-diabetic drug sales data:

```r
library(forecast)
library(fpp2)
library(changepoint)
library(ggfortify)

# Plot the time series:
autoplot(a10)

# Remove the seasonal part and plot the series again:
a10_ns <- a10 - stl(a10, s.window = 365)$time.series[,"seasonal"]
autoplot(a10_ns)

# Plot points where there are changes in the mean:
autoplot(cpt.mean(a10_ns))

# Choosing a different method for finding changepoints
# changes the result:
autoplot(cpt.mean(a10_ns, method = "BinSeg"))

# Plot points where there are changes in the variance:
autoplot(cpt.var(a10_ns))

# Plot points where there are changes in either the mean or
# the variance:
```
As you can see, the different methods from `changepoint` all yield different results. The results for changes in the mean are a bit dubious - which isn’t all that strange as we are using a method that looks for jumps in the mean on a time series where the increase actually is more or less continuous. The changepoint for the variance looks more reliable - there is a clear change towards the end of the series where the sales become more volatile. We won’t go into details about the different methods here, but mention that the documentation at `?cpt.mean`, `?cpt.var`, and `?cpt.meanvar` contains descriptions of and references for the available methods.

Exercise 4.16. Are there any changepoints for variance in the Demand time series in `elecdaily`? Can you explain why the behaviour of the series changes?

4.6.7 Interactive time series plots

The `plotly` packages can be used to create interactive time series plots. As before, you create a `ggplot2` object as usual, assigning it to a variable and then call the `ggplotly` function. Here is an example with the `elecdaily` data:

```r
library(plotly)
library(fpp2)
myPlot <- autoplot(elecdaily[, "Demand"])
ggplotly(myPlot)
```

When you hover the mouse pointer over a point, a box appears, displaying information about that data point. Unfortunately, the date formatting isn’t great in this example - dates are shown as weeks with decimal points. We’ll see how to fix this in Section 5.6.

4.7 Using polar coordinates

Most plots are made using *Cartesian coordinates systems*, in which the axes are orthogonal to each other and values are placed in an even spacing along each axis. In some cases, nonlinear axes (e.g. log-transformed) are used instead, as we have already seen.

Another option is to use a *polar* coordinate system, in which positions are specified using an angle and a (radial) distance from the origin. Here is an example of a polar scatterplot:
4.7. USING POLAR COORDINATES

4.7.1 Visualising periodic data

Polar coordinates are particularly useful when the data is periodic. Consider for instance the following dataset, describing monthly weather averages for Cape Town, South Africa:

```r
Cape_Town_weather <- data.frame(
  Month = 1:12,
  Temp_C = c(22, 23, 21, 18, 16, 13, 13, 14, 16, 18, 20),
  Rain_mm = c(20, 20, 30, 50, 70, 90, 100, 70, 50, 40, 20, 20),
  Sun_h = c(11, 10, 9, 7, 6, 6, 5, 6, 7, 9, 10, 11))
```

We can visualise the monthly average temperature using lines in a Cartesian coordinate system:

```r
ggplot(Cape_Town_weather, aes(Month, Temp_C)) + geom_line()
```

What this plot doesn’t show is that the 12th month and the 1st month actually are consecutive months. If we instead use polar coordinates, this becomes clearer:

```r
ggplot(Cape_Town_weather, aes(Month, Temp_C)) + geom_line() + coord_polar()
```

To improve the presentation, we can change the scale of the x-axis (i.e. the circular axis) so that January and December aren’t plotted at the same angle:

```r
ggplot(Cape_Town_weather, aes(Month, Temp_C)) + geom_line() + coord_polar() + xlim(0, 12)
```

~

Exercise 4.17. In the plot that we just created, the last and first month of the year aren’t connected. You can fix manually this by adding a cleverly designed faux data point to `Cape_Town_weather`. How?
4.7.2 Pie charts

Consider the stacked bar chart that we plotted in Section 2.8:

```r
ggplot(msleep, aes(factor(1), fill = vore)) + geom_bar()
```

What would happen if we plotted this figure in a polar coordinate system instead? If we map the height of the bars (the y-axis of the Cartesian coordinate system) to both the angle and the radial distance, we end up with a pie chart:

```r
ggplot(msleep, aes(factor(1), fill = vore)) + geom_bar() + coord_polar(theta = "y")
```

There are many arguments against using pie charts for visualisations. Most boil down to the fact that the same information is easier to interpret when conveyed as a bar chart. This is at least partially due to the fact that most people are more used to reading plots in Cartesian coordinates than in polar coordinates.

If we make a similar transformation of a grouped bar chart, we get a different type of pie chart, in which the height of the bars are mapped to both the angle and the radial distance⁶:

```r
# Cartesian bar chart:
ggplot(msleep, aes(vore, fill = vore)) + geom_bar()

# Polar bar chart:
ggplot(msleep, aes(vore, fill = vore)) + geom_bar() + coord_polar()
```

4.8 Visualising multiple variables

4.8.1 Scatterplot matrices

When we have a large enough number of numeric variables in our data, plotting scatterplots of all pairs of variables becomes tedious. Luckily there are some R functions that speed up this process.

The GGally package is an extension to ggplot2 which contains several functions for plotting multivariate data. They work similarly to the autoplot functions that we have used in previous sections. One of these is ggpairs, which creates a scatterplot matrix, a grid with scatterplots of all pairs of variables in data. In addition, it also

⁶Florence Nightingale, who famously pioneered the use of the pie chart, drew her pie charts this way.
4.8. VISUALISING MULTIPLE VARIABLES

plots density estimates (along the diagonal) and shows the (Pearson) correlation for each pair. Let's start by installing `GGally`:

```
install.packages("GGally")
```

To create a scatterplot matrix for the `airquality` dataset, simply write:

```
library(GGally)
ggpairs(airquality)
```

(Enlarging your Plot window can make the figure look better.)

If we want to create a scatterplot matrix but only want to include some of the variables in a dataset, we can do so by providing a vector with variable names. Here is an example for the animal sleep data `msleep`:

```
ggpairs(msleep[, c("sleep_total", "sleep_rem", "sleep_cycle", "awake", "brainwt", "bodywt")])
```

Optionally, if we wish to create a scatterplot involving all numeric variables, we can replace the vector with variable names with some R code that extracts the columns containing numeric variables:

```
ggpairs(msleep[, which(sapply(msleep, class) == "numeric")])
```

(You’ll learn more about the `sapply` function in Section 6.5.)

The resulting plot is identical to the previous one, because the list of names contained all numeric variables. The grab-all-numeric-variables approach is often convenient, because we don’t have to write all the variable names. On the other hand, it’s not very helpful in case we only want to include some of the numeric variables.

If we include a categorical variable in the list of variables (such as the feeding behaviour `vore`), the matrix will include a bar plot of the categorical variable as well as boxplots and facetted histograms to show differences between different categories in the continuous variables:

```
ggpairs(msleep[, c("vore", "sleep_total", "sleep_rem", "sleep_cycle", "awake", "brainwt", "bodywt")])
```

Alternatively, we can use a categorical variable to colour points and density estimates using `aes(colour = ...)`. The syntax for this is follows the same pattern as that for a standard `ggplot` call - `ggpairs(data, aes)`. The only exception is that if the categorical variable is not included in the `data` argument, we much specify which data frame it belongs to:

```
ggpairs(msleep[, c("sleep_total", "sleep_rem", "sleep_cycle", "awake", "brainwt", "bodywt")],
aes(colour = msleep$vore, alpha = 0.5))
```
As a side note, if all variables in your data frame are numeric, and if you only are looking for a quick-and-dirty scatterplot matrix without density estimates and correlations, you can also use the base R `plot`:

```
plot(airquality)
```

Exercise 4.18. Create a scatterplot matrix for all numeric variables in diamonds. Differentiate different cuts by colour. Add a suitable title to the plot. (diamonds is a fairly large dataset, and it may take a minute or so for R to create the plot.)

4.8.2 3D scatterplots

The `plotly` package lets us make three-dimensional scatterplots with the `plot_ly` function, which can be a useful alternative to scatterplot matrices in some cases. Here is an example using the `airquality` data:

```
library(plotly)
plot_ly(airquality, x = ~Ozone, y = ~Wind, z = ~Temp,
       color = ~factor(Month))
```

Note that you can drag and rotate the plot, to see it from different angles.

4.8.3 Correlograms

Scatterplot matrices are not a good choice when we have too many variables, partially because the plot window needs to be very large to fit all variables and partially because it becomes difficult to get a good overview of the data. In such cases, a correlogram, where the strength of the correlation between each pair of variables is plotted instead of scatterplots, can be used instead. It is effectively a visualisation of the correlation matrix of the data, where the strengths and signs of the correlations are represented by different colours.

The `GGally` package contains the function `ggcorr`, which can be used to create a correlogram:

```
ggcorr(msleep[, c("sleep_total", "sleep_rem", "sleep_cycle", "awake", "brainwt", "bodywt")])
```

Exercise 4.19. Using the diamonds dataset and the documentation for `ggcorr`, do the following:

1. Create a correlogram for all numeric variables in the dataset.
2. The Pearson correlation that \texttt{ggcorr} uses by default isn’t always the best choice. A commonly used alternative is the Spearman correlation. Change the type of correlation used to create the plot to the Spearman correlation.

3. Change the colour scale from a categorical scale with 5 categories.

4. Change the colours on the scale to go from yellow (low correlation) to black (high correlation).

4.8.4 Adding more variables to scatterplots

We have already seen how scatterplots can be used to visualise two continuous and one categorical variable by plotting the two continuous variables against each other and using the categorical variable to set the colours of the points. There are however more ways we can incorporate information about additional variables into a scatterplot.

So far, we have set three aesthetics in our scatterplots: \texttt{x}, \texttt{y} and \texttt{colour}. Two other important aesthetics are \texttt{shape} and \texttt{size}, which, as you’d expect, allow us to control the shape and size of the points. As a first example using the \texttt{msleep} data, we use feeding behaviour (\texttt{vore}) to set the shapes used for the points:

\begin{verbatim}
ggplot(msleep, aes(brainwt, sleep_total, shape = vore)) + geom_point() + scale_x_log10()
\end{verbatim}

The plot looks a little nicer if we increase the \texttt{size} of the points:

\begin{verbatim}
ggplot(msleep, aes(brainwt, sleep_total, shape = vore, size = 2)) + geom_point() + scale_x_log10()
\end{verbatim}

Another option is to let \texttt{size} represent a continuous variable, in what is known as a bubble plot:

\begin{verbatim}
ggplot(msleep, aes(brainwt, sleep_total, colour = vore, size = bodywt)) + geom_point() + scale_x_log10()
\end{verbatim}

The size of each “bubble” now represents the weight of the animal. Because some animals are much heavier (i.e. have higher \texttt{bodywt} values) than most others, almost all points are quite small. There are a couple of things we can do to remedy this. First, we can transform \texttt{bodywt}, e.g. using the square root transformation \texttt{sqrt(bodywt)}, to decrease the differences between large and small animals. This can be done by adding \texttt{scale_size(trans = "sqrt")} to the plot. Second, we can also use \texttt{scale_size} to control the range of point sizes (e.g. from size 1 to size 20). This will cause some points to overlap, so we add \texttt{alpha = 0.5} to the \texttt{geom}, to make the points transparent:
CHAPTER 4. EXPLORATORY DATA ANALYSIS AND UNSUPERVISED LEARNING

```
ggplot(msleep, aes(brainwt, sleep_total, colour = vore, size = bodywt)) +
  geom_point(alpha = 0.5) +
  scale_x_log10() +
  scale_size(range = c(1, 20), trans = "sqrt")
```

This produces a fairly nice-looking plot, but it’d look even better if we changed the axes labels and legend texts. We can change the legend text for the size scale by adding the argument `name` to `scale_size`. Including a `\n` in the text lets us create a line break - you’ll learn more tricks like that in Section 5.5. Similarly, we can use `scale_colour_discrete` to change the legend text for the colours:

```
ggplot(msleep, aes(brainwt, sleep_total, colour = vore, size = bodywt)) +
  geom_point(alpha = 0.5) +
  xlab("log(Brain weight)") +
  ylab("Sleep total (h)") +
  scale_x_log10() +
  scale_size(range = c(1, 20), trans = "sqrt",
             name = "Square root of\nbody weight") +
  scale_colour_discrete(name = "Feeding behaviour")
```

Exercise 4.20. Using the bubble plot created above, do the following:

1. Replace `colour = vore` in the `aes` by `fill = vore` and add `colour = "black", shape = 21` to `geom_point`. What happens?

2. Use `ggplotly` to create an interactive version of the bubble plot above, where variable information and the animal name are displayed when you hover a point.

4.8.5 Overplotting

Let’s make a scatterplot of `table` versus `depth` based on the `diamonds` dataset:

```
ggplot(diamonds, aes(table, depth)) +
  geom_point()
```

This plot is cluttered. There are too many points, which makes it difficult to see if, for instance, high `table` values are more common than low `table` values. In this section, we’ll look at some ways to deal with this problem, known as overplotting.

The first thing we can try is to decrease the point size:
4.8. VISUALISING MULTIPLE VARIABLES

```r
ggplot(diamonds, aes(table, depth)) + geom_point(size = 0.1)
```

This helps a little, but now the outliers become a bit difficult to spot. We can try changing the opacity using `alpha` instead:

```r
ggplot(diamonds, aes(table, depth)) + geom_point(alpha = 0.2)
```

This is also better than the original plot, but neither plot is great. Instead of plotting each individual point, maybe we can try plotting the counts or densities in different regions of the plot instead? Effectively, this would be a 2D version of a histogram. There are several ways of doing this in `ggplot2`.

First, we bin the points and count the numbers in each bin, using `geom_bin2d`:

```r
ggplot(diamonds, aes(table, depth)) + geom_bin2d()
```

By default, `geom_bin2d` uses 30 bins. Increasing that number can sometimes give us a better idea about the distribution of the data:

```r
ggplot(diamonds, aes(table, depth)) + geom_bin2d(bins = 50)
```

If you prefer, you can get a similar plot with hexagonal bins by using `geom_hex` instead:

```r
ggplot(diamonds, aes(table, depth)) + geom_hex(bins = 50)
```

As an alternative to bin counts, we could create a 2-dimensional density estimate and create a contour plot showing the levels of the density:

```r
ggplot(diamonds, aes(table, depth)) + 
  stat_density_2d(aes(fill = ..level..), geom = "polygon", 
                  colour = "white")
```

The `fill = ..level..` bit above probably looks a little strange to you. It means that an internal function (the level of the contours) is used to choose the fill colours. It also means that we’ve reached a point where we’re reaching deep into the depths of `ggplot2`!

We can use a similar approach to show a summary statistic for a third variable in a plot. For instance, we may want to plot the average price as a function of `table` and `depth`. This is called a tile plot:

```r
ggplot(diamonds, aes(table, depth, z = price)) + 
  geom_tile(binwidth = 1, stat = "summary_2d", fun = mean) +
```
CHAPTER 4. EXPLORATORY DATA ANALYSIS AND UNSUPERVISED LEARNING

Exercise 4.21. The following tasks involve the diamonds dataset:

1. Create a tile plot of table versus depth, showing the highest price for a diamond in each bin.

2. Create a bin plot of carat versus price. What type of diamonds have the highest bin counts?

4.8.6 Categorical data

When visualising a pair of categorical variables, plots similar to those in the previous section prove to be useful. One way of doing this is to use the geom_count geom. We illustrate this with an example using diamonds, showing how common different combinations of colours and cuts are:

```r
ggplot(diamonds, aes(color, cut)) + geom_count()
```

However, it is often better to use colour rather than point size to visualise counts, which we can do using a tile plot. First, we have to compute the counts though, using aggregate. We now wish to have two grouping variables, color and cut, which we can put on the right-hand side of the formula as follows:

```r
diamonds2 <- aggregate(carat ~ cut + color, data = diamonds, FUN = length)
diamonds2
```

`diamonds2` is now a data frame containing the different combinations of `color` and `cut` along with counts of how many diamonds belong to each combination (labelled `carat`, because we put `carat` in our formula). Let’s change the name of the last column from `carat` to `Count`:

```r
names(diamonds2)[3] <- "Count"
```

Next, we can plot the counts using geom_tile:

```r
ggplot(diamonds2, aes(color, cut, fill = Count)) + geom_tile()
```

It is also possible to combine point size and colours:
4.8. VISUALISING MULTIPLE VARIABLES

Exercise 4.22. Using the diamonds dataset, do the following:

1. Use a plot to find out what the most common combination of cut and clarity is.
2. Use a plot to find out which combination of cut and clarity has the highest average price.

4.8.7 Putting it all together

In the next two exercises, you will repeat what you have learned so far by investigating the gapminder and planes datasets. First, load the corresponding libraries and have a look at the documentation for each dataset:

```r
install.packages("gapminder")
library(gapminder)
?gapminder
library(nycflights13)
?planes
```

Exercise 4.23. Do the following using the gapminder dataset:

1. Create a scatterplot matrix showing life expectancy, population and GDP per capita for all countries, using the data from the year 2007. Use colours to differentiate countries from different continents. Note: you’ll probably need to add the argument `upper = list(continuous = "na")` when creating the scatterplot matrix. By default, correlations are shown above the diagonal, but the fact that there only are two countries from Oceania will cause a problem there - at least 3 points are needed for a correlation test.

2. Create an interactive bubble plot, showing information about each country when you hover the points. Use data from the year 2007. Put log(GDP per capita) on the x-axis and life expectancy on the y-axis. Let population determine point size. Plot each country in a different colour and facet by continent. Tip: the gapminder package provides a pretty colour scheme for different countries, called country_colors. You can use that scheme by adding `scale_colour_manual(values = country_colors)` to your plot.
Exercise 4.24. Use graphics to answer the following questions regarding the planes dataset:

1. What is the most common combination of manufacturer and plane type in the dataset?
2. Which combination of manufacturer and plane type has the highest average number of seats?
3. Do the numbers of seats on planes change over time? Which plane had the highest number of seats?
4. Does the type of engine used change over time?

4.9 Principal component analysis

If there are many variables in your data, it can often be difficult to detect differences between groups or create a perspicuous visualisation. A useful tool in this context is principal component analysis (PCA, for short), which can reduce high-dimensional data to a lower number of variables that can be visualised in one or two scatter-plots. The idea is to compute new variables, called principal components, that are linear combinations of the original variables\(^7\). These are constructed with two goals in mind: the principal components should capture as much of the variance in the data as possible, and each principal component should be uncorrelated to the other components. You can then plot the principal components to get a low-dimensional representation of your data, which hopefully captures most of its variation.

By design, the number of principal components computed are as many as the original number of variables, with the first having the largest variance, the second having the second largest variance, and so on. We hope that it will suffice to use just the first few of these to represent most of the variation in the data, but this is not guaranteed. Principal component analysis is more likely to yield a useful result if several variables are correlated.

To illustrate the principles of PCA we will use a dataset from Charytanowicz et al. (2010), containing measurements on wheat kernels for three varieties of wheat. A description of the variables is available at http://archive.ics.uci.edu/ml/datasets/seeds

We are interested to find out if these measurements can be used to distinguish between the varieties. The data is stored in a .txt file, which we import using read.table (which works just like read.csv, but is tailored to text files) and convert the Variety

\(^7\)A linear combination is a weighted sum of the form \(a_1x_1 + a_2x_2 + \cdots + a_px_p\). If you like, you can think of principal components as weighted averages of variables, computed for each row in your data.
column to a categorical factor variable (which you’ll learn more about in Section 5.4):

```r
# The data is downloaded from the UCI Machine Learning Repository:
# http://archive.ics.uci.edu/ml/datasets/seeds
seeds <- read.table("https://tinyurl.com/seedsdata",
  col.names = c("Area", "Perimeter", "Compactness",
  "Kernel_length", "Kernel_width", "Asymmetry",
  "Groove_length", "Variety"))
seeds$Variety <- factor(seeds$Variety)
```

If we make a scatterplot matrix of all variables, it becomes evident that there are differences between the varieties, but that no single pair of variables is enough to separate them:

```r
library(ggplot2)
library(GGally)
ggpairs(seeds[, -8], aes(colour = seeds$Variety, alpha = 0.2))
```

Moreover, for presentation purposes, the amount of information in the scatterplot matrix is a bit overwhelming. It would be nice to be able to present the data in a single scatterplot, without losing too much information. We’ll therefore compute the principal components using the `prcomp` function. It is usually recommended that PCA is performed using standardised data, i.e. using data that has been scaled to have mean 0 and standard deviation 1. The reason for this is that it puts all variables on the same scale. If we don’t standardise our data then variables with a high variance will completely dominate the principal components. This isn’t desirable, as variance is affected by the scale of the measurements, meaning that the choice of measurement scale would influence the results (as an example, the variance of kernel length will be a million times greater if lengths are measured in millimetres instead of in metres).

We don’t have to standardise the data ourselves, but can let `prcomp` do that for us using the arguments `center = TRUE` (to get mean 0) and `scale. = TRUE` (to get standard deviation 1):

```r
# Compute principal components:
pca <- prcomp(seeds[, -8], center = TRUE, scale. = TRUE)
```

To see the loadings of the components, i.e. how much each variable contributes to the components, simply type the name of the object `prcomp` created:

```r
pca
```

The first principal component is more or less a weighted average of all variables, but has stronger weights on `Area`, `Perimeter`, `Kernel_length`, `Kernel_width`, and `Groove_length`, all of which are measures of size. We can therefore interpret it as a size variable. The second component has higher loadings for `Compactness` and `Asymmetry`, meaning that it mainly measures those shape features. In Exercise 4.26
you’ll see how the loadings can be visualised in a *biplot*.

To see how much of the variance each component represents, use `summary`:

```r
summary(pca)
```

The first principal component accounts for 71.87 % of the variance, and the first three combined account for 98.67 %.

To visualise this, we can draw a *scree plot*, which shows the variance of each principal component - the total variance of the data is the sum of the variances of the principal components:

```r
screeplot(pca, type = "lines")
```

We can use this to choose how many principal components to use when visualising or summarising our data. In that case, we look for an “elbow”, i.e. a bend after which increases the number of components doesn’t increase the amount of variance explained much.

We can access the values of the principal components using `pca$x`. Let’s check that the first two components really are uncorrelated:

```r
cor(pca$x[,1], pca$x[,2])
```

In this case, almost all of the variance is summarised by the first two or three principal components. It appears that we have successfully reduced the data from 7 variables to 2-3, which should make visualisation much easier. The *ggfortify* package contains an `autoplot` function for PCA objects, that creates a scatterplot of the first two principal components:

```r
library(ggfortify)
autoplot(pca, data = seeds, colour = "Variety")
```

That is much better! The groups are almost completely separated, which shows that the variables can be used to discriminate between the three varieties. The first principal component accounts for 71.87 % of the total variance in the data, and the second for 17.11 %.

If you like, you can plot other pairs of principal components than just components 1 and 2. In this case, component 3 may be of interest, as its variance is almost as high as that of component 2. You can specify which components to plot with the `x` and `y` arguments:

```r
# Plot 2nd and 3rd PC:
autoplot(pca, data = seeds, colour = "Variety",
        x = 2, y = 3)
```

Here, the separation is nowhere near as clear as in the previous figure. In this particular example, plotting the first two principal components is the better choice.
Judging from these plots, it appears that the kernel measurements can be used to discriminate between the three varieties of wheat. In Chapters 7 and 9 you’ll learn how to use R to build models that can be used to do just that, e.g. by predicting which variety of wheat a kernel comes from given its measurements. If we wanted to build a statistical model that could be used for this purpose, we could use the original measurements. But we could also try using the first two principal components as the only input to the model. Principal component analysis is very useful as a pre-processing tool, used to create simpler models based on fewer variables (or ostensibly simpler, because the new variables are typically more difficult to interpret than the original ones).

Exercise 4.25. Use principal components on the carat, x, y, z, depth, and table variables in the diamonds data, and answer the following questions:

1. How much of the total variance does the first principal component account for? How many components are needed to account for at least 90 % of the total variance?

2. Judging by the loadings, what do the first two principal components measure?

3. What is the correlation between the first principal component and price?

4. Can the first two principal components be used to distinguish between diamonds with different cuts?

Exercise 4.26. Return to the scatterplot of the first two principal components for the seeds data, created above. Adding the arguments loadings = TRUE and loadings.label = TRUE to the autoplot call creates a biplot, which shows the loadings for the principal components on top of the scatterplot. Create a biplot and compare the result to those obtained by looking at the loadings numerically. Do the conclusions from the two approaches agree?

4.10 Cluster analysis

Cluster analysis is concerned with grouping observations into groups, clusters, that in some sense are similar. Numerous methods are available for this task, approaching the problem from different angles. Many of these are available in the cluster package, which ships with R. In this section, we’ll look at a smorgasbord of clustering techniques.
4.10.1 Hierarchical clustering

As a first example where clustering can be of interest, we’ll consider the votes.repub data from cluster. It describes the proportion of votes for the Republican candidate in US presidential elections from 1856 to 1976 in 50 different states:

library(cluster)
?qvotes.repub
View(votes.repub)

We are interested in finding subgroups - clusters - of states with similar voting patterns.

To find clusters of similar observations (states, in this case), we could start by assigning each observation to its own cluster. We’d then start with 50 clusters, one for each observation. Next, we could merge the two clusters that are the most similar, yielding 49 clusters, one of which consisted of two observations and 48 consisting of a single observation. We could repeat this process, merging the two most similar clusters in each iteration until only a single cluster was left. This would give us a hierarchy of clusters, which could be plotted in a tree-like structure, where observations from the same cluster would be on the same branch. Like this:

clusters_agnes <- agnes(votes.repub)
plot(clusters_agnes, which = 2)

This type of plot is known as a dendrogram.

We’ve just used agnes, a function from cluster that can be used to carry out hierarchical clustering in the manner described above. There are a couple of things that need to be clarified, though.

First, how do we measure how similar two \(p\)-dimensional observations \(x\) and \(y\) are? agnes provides two measures of distance between points:

- **metric = "euclidean"** (the default), uses the Euclidean \(L_2\) distance \(\|x-y\| = \sqrt{\sum_{i=1}^{p} (x_i - y_i)^2}\),
- **metric = "manhattan"**, uses the Manhattan \(L_1\) distance \(\|x - y\| = \sum_{i=1}^{p} |x_i - y_i|\).

Note that neither of these will work if you have categorical variables in your data. If all your variables are binary, i.e. categorical with two values, you can use mona instead of agnes for hierarchical clustering.

Second, how do we measure how similar two clusters of observations are? agnes offers a number of options here. Among them are:

- **method = "average** (the default), unweighted average linkage, uses the average distance between points from the two clusters,
4.10. CLUSTER ANALYSIS

- **method = "single"**, single linkage, uses the smallest distance between points from the two clusters,
- **method = "complete"**, complete linkage, uses the largest distance between points from the two clusters,
- **method = "ward"**, Ward’s method, uses the within-cluster variance to compare different possible clusterings, with the clustering with the lowest within-cluster variance being chosen.

Regardless of which of these that you use, it is often a good idea to standardise the numeric variables in your dataset so that they all have the same variance. If you don’t, your distance measure is likely to be dominated by variables with larger variance, while variables with low variances will have little or no impact on the clustering. To standardise your data, you can use `scale`:

```r
# Perform clustering on standardised data:
clusters_agnes <- agnes(scale(votes.repub))
# Plot dendrogram:
plot(clusters_agnes, which = 2)
```

At this point, we’re starting to use several functions after another, and so this looks like a perfect job for a pipeline. To carry out the same analysis uses `%>%` pipes, we write:

```r
library(magrittr)
votes.repub %>% scale() %>%
  agnes() %>%
  plot(which = 2)
```

We can now try changing the metric and clustering method used as described above. Let’s use the Manhattan distance and complete linkage:

```r
votes.repub %>% scale() %>%
  agnes(metric = "manhattan", method = "complete") %>%
  plot(which = 2)
```

We can change the look of the dendrogram by adding `hang = -1`, which causes all observations to be placed at the same level:

```r
votes.repub %>% scale() %>%
  agnes(metric = "manhattan", method = "complete") %>%
  plot(which = 2, hang = -1)
```

As an alternative to `agnes`, we can consider `diana`. `agnes` is an agglomerative method, which starts with a lot of clusters and then merge them step-by-step. `diana`, in contrast, is a divisive method, which starts with one large cluster and then step-by-step splits it into several smaller clusters.
You can change the distance measure used by setting `metric` in the `diana` call. Euclidean distance is the default.

To wrap this section up, we'll look at two packages that are useful for plotting the results of hierarchical clustering: `dendextend` and `factoextra`. We installed `factoextra` in the previous section, but still need to install `dendextend`:

`install.packages("dendextend")`

To compare the dendrograms from produced by different methods (or the same method with different settings), in a tanglegram, where the dendrograms are plotted against each other, we can use `tanglegram` from `dendextend`:

```
library(dendextend)
# Create clusters using agnes:
votes.repub %>% scale() %>%
diana() %>%
plot(which = 2)

# Create clusters using diana:
votes.repub %>% scale() %>%
diana() -> clusters_diana

# Compare the results:
tanglegram(as.dendrogram(clusters_agnes),
           as.dendrogram(clusters_diana))
```

Some clusters are quite similar here, whereas others are very different.

Often, we are interested in finding a comparatively small number of clusters, k. In hierarchical clustering, we can reduce the number of clusters by “cutting” the dendrogram tree. To do so using the `factoextra` package, we first use `hcut` to cut the tree into k parts, and then `fviz_dend` to plot the dendrogram, with each cluster plotted in a different colour. If, for instance, we want $k = 5$ clusters and want to use `agnes` with average linkage and Euclidean distance for the clustering, we'd do the following:

```
library(factoextra)
votes.repub %>% scale() %>%
    hcut(k = 5, hc_func = "agnes",
         hc_method = "average",
         hc_metric = "euclidean") %>%
```

Just to be clear, 5 is just an arbitrary number here. We could of course want 4, 14, or any other number of clusters.
There is no inherent meaning to the colours - they are simply a way to visually distinguish between clusters.

Hierarchical clustering is especially suitable for data with named observations. For other types of data, other methods may be better. We will consider some alternatives next.

Exercise 4.27. Continue the last example above by changing the clustering method to complete linkage with the Manhattan distance.

1. Do any of the 5 coloured clusters remain the same?
2. How can you produce a tanglegram with 5 coloured clusters, to better compare the results from the two clusterings?

Exercise 4.28. The USArrests data contains statistics on violent crime rates in 50 US states. Perform a hierarchical cluster analysis of the data. With which states are Maryland clustered?

4.10.2 Heatmaps and clustering variables

When looking at a dendrogram, you may ask why and how different observations are similar. Similarities between observations can be visualised using a heatmap, which displays the levels of different variables using colour hues or intensities. The `heatmap` function creates a heatmap from a matrix object. Let’s try it with the `votes.repub` voting data. Because `votes.repub` is a `data.frame` object, we have to convert it to a matrix with `as.matrix` first (see Section 3.1.2):

```r
library(cluster)
library(magrittr)
votes.repub %>% as.matrix() %>% heatmap()
```

You may want to increase the height of your Plot window so that the names of all states are displayed properly. Using the default colours, low values are represented by a light yellow and high values by a dark red. White represents missing values.

You’ll notice that dendrograms are plotted along the margins. `heatmap` performs hierarchical clustering (by default, agglomerative with complete linkage) of the observations as well as of the variables. In the latter case, variables are grouped together based on similarities between observations, creating clusters of variables. In essence, this is just a hierarchical clustering of the transposed data matrix, but it does offer
a different view of the data, which at times can be very revealing. The rows and columns are sorted according to the two hierarchical clusterings.

As per usual, it is a good idea to standardise the data before clustering, which can be done using the `scale` argument in `heatmap`. There are two options for scaling, either in the row direction (preferable if you wish to cluster variables) or the column direction (preferable if you wish to cluster observations):

```r
# Standardisation suitable for clustering variables:
votes.repub %>% as.matrix() %>% heatmap(scale = "row")

# Standardisation suitable for clustering observations:
votes.repub %>% as.matrix() %>% heatmap(scale = "col")
```

Looking at the first of these plots, we can see which elections (i.e. which variables) had similar outcomes in terms of Republican votes. For instance, we can see that the elections in 1960, 1976, 1888, 1884, 1880, and 1876 all had similar outcomes, with the large number of orange rows indicating that the Republicans neither did great nor did poorly.

If you like, you can change the colour palette used. As in Section 4.2.2, you can choose between palettes from http://www.colorbrewer2.org. `heatmap` is not a `ggplot2` function, so this is done in a slightly different way to what you’re used to from other examples. Here are two examples, with the white-blue-purple sequential palette "BuPu" and the red-white-blue diverging palette "RdBu":

```r
library(RColorBrewer)
col_palette <- colorRampPalette(brewer.pal(8, "BuPu"))(25)
votes.repub %>% as.matrix() %>%
  heatmap(scale = "row", col = col_palette)

col_palette <- colorRampPalette(brewer.pal(8, "RdBu"))(25)
votes.repub %>% as.matrix() %>%
  heatmap(scale = "row", col = col_palette)
```

Exercise 4.29. Draw a heatmap for the `USArrests` data. Have a look at Maryland and the states with which it is clustered. Do they have high or low crime rates?

4.10.3 Centroid-based clustering

Let’s return to the `seeds` data that we explored in Section 4.9:

```r
# Download the data:
seeds <- read.table("https://tinyurl.com/seedsdata",
```
4.10. CLUSTER ANALYSIS

```r
seeds$Variety <- factor(seeds$Variety)
```

We know that there are three varieties of seeds in this dataset, but what if we didn’t? Or what if we’d lost the labels and didn’t know what seeds are of what type? There are no rows names for this data, and plotting a dendrogram may therefore not be that useful. Instead, we can use k-means clustering, where the points are clustered into k clusters based on their distances to the cluster means, or centroids.

When performing k-means clustering (using the algorithm of Hartigan & Wong (1979) that is the default in the function that we’ll use), the data is split into k clusters based on their distance to the mean of all points. Points are then moved between clusters, one at a time, based on how close they are (as measured by Euclidean distance) to the mean of each cluster. The algorithm finishes when no point can be moved between clusters without increasing the average distance between points and the means of their clusters.

To run a k-means clustering in R, we can use `kmeans`. Let’s start by using $k = 3$ clusters:

```r
# First, we standardise the data, and then we do a k-means clustering.
# We ignore variable 8, Variety, which is the group label.
library(magrittr)
seeds[, -8] %>% scale() %>%
  kmeans(centers = 3) -> seeds_cluster

seeds_cluster
```

To visualise the results, we’ll plot the first two principal components. We’ll use colour to show the clusters. Moreover, we’ll plot the different varieties in different shapes, to see if the clusters found correspond to different varieties:

```r
# Compute principal components:
pca <- prcomp(seeds[, -8])
library(ggfortify)
autoplot(pca, data = seeds, colour = seeds_cluster$cluster,
  shape = "Variety", size = 2, alpha = 0.75)
```

In this case, the clusters more or less overlap with the varieties! Of course, in a lot of cases, we don’t know the number of clusters beforehand. What happens if we change k?

First, we try $k = 2$:
seeds[, -8] %>% scale() %>%
 kmeans(centers = 2) -> seeds_cluster
autoplot(pca, data = seeds, colour = seeds_cluster$cluster,
 shape = "Variety", size = 2, alpha = 0.75)

Next, \(k = 4 \):

seeds[, -8] %>% scale() %>%
 kmeans(centers = 4) -> seeds_cluster
autoplot(pca, data = seeds, colour = seeds_cluster$cluster,
 shape = "Variety", size = 2, alpha = 0.75)

And finally, a larger number of clusters, say \(k = 12 \):

seeds[, -8] %>% scale() %>%
 kmeans(centers = 12) -> seeds_cluster
autoplot(pca, data = seeds, colour = seeds_cluster$cluster,
 shape = "Variety", size = 2, alpha = 0.75)

If it weren’t for the fact that the different varieties were shown as different shapes, we’d have no way to say, based on this plot alone, which choice of \(k \) that is preferable here. Before we go into methods for choosing \(k \) though, we’ll mention \texttt{pam}. \texttt{pam} is an alternative to \(k \)-means that works in the same way, but uses median-like points, medoids instead of cluster means. This makes it more robust to outliers. Let’s try it with \(k = 3 \) clusters:

seeds[, -8] %>% scale() %>%
 pam(k = 3) -> seeds_cluster
autoplot(pca, data = seeds, colour = seeds_cluster$clustering,
 shape = "Variety", size = 2, alpha = 0.75)

For both \texttt{kmeans} and \texttt{pam}, there are visual tools that can help us choose the value of \(k \) in the \texttt{factoextra} package. Let’s install it:

\texttt{install.packages("factoextra")}

The \texttt{fviz_nbclust} function in \texttt{factoextra} can be used to obtain plots that can guide the choice of \(k \). It takes three arguments as input: the data, the clustering function (e.g. \texttt{kmeans} or \texttt{pam}) and the method used for evaluating different choices of \(k \). There are three options for the latter: "\texttt{wss}"", "\texttt{silhouette}" and "\texttt{gap_stat}".

\texttt{method = "wss"} yields a plot that relies on the within-cluster sum of squares, WSS, which is a measure of the within-cluster variation. The smaller this is, the more compact are the clusters. The WSS is plotted for several choices of \(k \), and we look for an “elbow”, just as we did when using a scree plot for PCA. That is, we look for the value of \(k \) such that increasing \(k \) further doesn’t improve the WSS much. Let’s have a look at an example, using \texttt{pam} for clustering:
4.10. CLUSTER ANALYSIS

```
library(factoextra)
fviz_nbclust(scale(seeds[, -8]), pam, method = "wss")
# Or, using a pipeline instead:
library(magrittr)
seeds[, -8] %>% scale() %>%
  fviz_nbclust(pam, method = "wss")
```

$k = 3$ seems like a good choice here.

```
method = "silhouette" produces a silhouette plot. The silhouette value measures
how similar a point is compared to other points in its cluster. The closer to 1 this
value is, the better. In a silhouette plot, the average silhouette value for points in
the data are plotted against $k$:
```
fviz_nbclust(scale(seeds[, -8]), pam, method = "silhouette")
```

Judging by this plot, $k = 2$ appears to be the best choice.

Finally, `method = "gap_stat"` yields a plot of the gap statistic (Tibshirani et al.,
2001), which is based on comparing the WSS to its expected value under a null
distribution obtained using the bootstrap (Section 7.7). Higher values of the gap
statistic are preferable:
```
fviz_nbclust(scale(seeds[, -8]), pam, method = "gap_stat")
```

In this case, $k = 3$ gives the best value.

In addition to plots for choosing $k$, `factoextra` provides the function `fviz_cluster`
for creating PCA-based plots, with an option to add convex hulls or ellipses around
the clusters:
```
First, find the clusters:
seeds[, -8] %>% scale() %>%
 kmeans(centers = 3) -> seeds_cluster

Plot clusters and their convex hulls:
library(factoextra)
fviz_cluster(seeds_cluster, data = seeds[, -8])

Without row numbers:
fviz_cluster(seeds_cluster, data = seeds[, -8], geom = "point")

With ellipses based on the multivariate normal distribution:
fviz_cluster(seeds_cluster, data = seeds[, -8],
 geom = "point", ellipse.type = "norm")
```
Note that in this plot, the shapes correspond to the clusters and not the varieties of seeds.

Exercise 4.30. The chorSub data from cluster contains measurements of 10 chemicals in 61 geological samples from the Kola Peninsula. Cluster this data using either kmeans or pam (does either seem to be a better choice here?). What is a good choice of $k$ here? Visualise the results.

4.10.4 Fuzzy clustering

An alternative to $k$-means clustering is fuzzy clustering, in which each point is “spread out” over the $k$ clusters instead of being placed in a single cluster. The more similar it is to other observations in a cluster, the higher is its membership in that cluster. Points can have a high degree of membership to several clusters, which is useful in applications where points should be allowed to belong to more than one cluster. An important example is genetics, where genes can encode proteins with more than one function. If each point corresponds to a gene, it then makes sense to allow the points to belong to several clusters, potentially associated with different functions. The opposite of fuzzy clustering is hard clustering, in which each point only belongs to one cluster.

fanny from cluster can be used to perform fuzzy clustering:

```r
library(cluster)
library(magrittr)
seeds[, 8] %>% scale() %>%
 fanny(k = 3) -> seeds_cluster

Check membership of each cluster for the different points:
seeds_cluster$membership

Plot the closest hard clustering:
library(factoextra)
fviz_cluster(seeds_cluster, geom = "point")
```

As for kmeans and pam, we can use fviz_nbclust to determine how many clusters to use:

```r
seeds[, 8] %>% scale() %>%
fviz_nbclust(fanny, method = "wss")
seeds[, 8] %>% scale() %>%
fviz_nbclust(fanny, method = "silhouette")
Producing the gap statistic plot takes a while here, so
Exercise 4.31. Do a fuzzy clustering of the `USArrests` data. Is Maryland strongly associated with a single cluster, or with several clusters? What about New Jersey?

4.10.5 Model-based clustering

As a last option, we'll consider model-based clustering, in which each cluster is assumed to come from a multivariate normal distribution. This will yield ellipsoidal clusters. `Mclust` from the `mclust` package fits such a model, called a Gaussian finite mixture model, using the EM-algorithm (Scrucca et al., 2016). First, let's install the package:

```
install.packages("mclust")
```

Now, let's cluster the `seeds` data. The number of clusters is chosen as part of the clustering procedure. We'll use a function from the `factoextra` for plotting the clusters with ellipsoids, and so start by installing that:

```
install.packages("factoextra")
```

```
library(mclust)
seeds_cluster <- Mclust(scale(seeds[, -8]))
summary(seeds_cluster)
```

```
# Plot results with ellipsoids:
library(factoextra)
fviz_cluster(seeds_cluster, geom = "point", ellipse.type = "norm")
```

Gaussian finite mixture models are based on the assumption that the data is numerical. For categorical data, we can use latent class analysis, which we'll discuss in Section 4.11.2, instead.

Exercise 4.32. Return to the `chorSub` data from Exercise 4.30. Cluster it using a Gaussian finite mixture model. How many clusters do you find?
4.10.6 Comparing clusters

Having found some interesting clusters, we are often interested in exploring differences between the clusters. To do so, we must first extract the cluster labels from our clustering (which are contained in the variables `clustering` for methods with Western female names, `cluster` for `kmeans`, and `classification` for `Mclust`). We can then add those labels to our data frame and use them when plotting.

For instance, using the `seeds` data, we can compare the area of seeds from different clusters:

```r
# Cluster the seeds using k-means with k=3:
library(cluster)
seeds[, -8] %>% scale() %>%
kmeans(centers = 3) -> seeds_cluster

# Add the results to the data frame:
seeds$clusters <- factor(seeds_cluster$cluster)
# Instead of $cluster, we’d use $clustering for agnes, pam, and fanny
# objects, and $classification for an Mclust object.

# Compare the areas of the 3 clusters using boxplots:
library(ggplot2)
ggplot(seeds, aes(x = Area, group = clusters, fill = clusters)) + geom_boxplot()

# Or using density estimates:
nggplot(seeds, aes(x = Area, group = clusters, fill = clusters)) + geom_density(alpha = 0.7)
```

We can also create a scatterplot matrix to look at all variables simultaneously:

```r
library(GGally)
ggpairs(seeds[, -8], aes(colour = seeds$clusters, alpha = 0.2))
```

It may be tempting to run some statistical tests (e.g. a t-test) to see if there are differences between the clusters. Note, however, that in statistical hypothesis testing, it is typically assumed that the hypotheses that are being tested have been generated independently from the data. *Double-dipping*, where the data first is used to generate a hypothesis (“judging from this boxplot, there seems to be a difference in means between these two groups!” or “I found these clusters, and now I’ll run a test to see if they are different”) and then test that hypothesis, is generally frowned upon, as that substantially inflates the risk of a type I error. Recently, there have however been some advances in valid techniques for testing differences in means between clusters found using hierarchical clustering; see Gao et al. (2020).
4.11 Exploratory factor analysis

The purpose of factor analysis is to describe and understand the correlation structure for a set of observable variables through a smaller number of unobservable underlying variables, called factors or latent variables. These are thought to explain the values of the observed variables in a causal manner. Factor analysis is a popular tool in psychometrics, where it for instance is used to identify latent variables that explain people’s results on different tests, e.g. related to personality, intelligence, or attitude.

4.11.1 Factor analysis

We’ll use the psych package, along with the associated package GPArotation, for our analyses. Let’s install them:

```r
install.packages(c("psych", "GPArotation"))
```

For our first example of factor analysis, we’ll be using the attitude data that comes with R. It describes the outcome of a survey of employees at a financial organisation. Have a look at its documentation to read about the variables in the dataset:

```r
?attitude
```

To fit a factor analysis model to these data, we can use fa from psych. fa requires us to specify the number of factors used in the model. We’ll get back to how to choose the number of factors, but for now, let’s go with 2:

```r
library(psych)
# Fit factor model:
attitude_fa <- fa(attitude, nfactors = 2,
                   rotate = "oblimin", fm = "ml")
```

fa does two things for us. First, it fits a factor model to the data, which yields a table of factor loadings, i.e. the correlation between the two unobserved factors and the observed variables. However, there is an infinite number of mathematically valid factor models for any given dataset. Therefore, the factors are rotated according to some rule to obtain a factor model that hopefully allows for easy and useful interpretation. Several methods can be used to fit the factor model (set using the fm argument in fa) and for rotation the solution (set using rotate). We’ll look at some of the options shortly.

First, we’ll print the result, showing the factor loadings (after rotation). We’ll also plot the resulting model using fa.diagram, showing the correlation between the factors and the observed variables:

```r
# Print results:
attitude_fa
```
The first factor is correlated to the variables `advance`, `learning` and `raises`. We can perhaps interpret this factor as measuring the employees’ career opportunity at the organisation. The second factor is strongly correlated to `complaints` and (overall) `rating`, but also to a lesser degree correlated to `raises`, `learning` and `privileges`. This can maybe be interpreted as measuring how the employees’ feel that they are treated at the organisation.

We can also see that the two factors are correlated. In some cases, it makes sense to expect the factors to be uncorrelated. In that case, we can change the rotation method used, from `oblimin` (which yields oblique rotations, allowing for correlations - usually a good default) to `varimax`, which yields uncorrelated factors:

```r
attitude_fa <- fa(attitude, nfactors = 2, rotate = "varimax", fm = "ml")
fa.diagram(attitude_fa, simple = FALSE)
```

In this case, the results are fairly similar.

The `fm = "ml"` setting means that maximum likelihood estimation of the factor model is performed, under the assumption of a normal distribution for the data. Maximum likelihood estimation is widely recommended for estimation of factor models, and can often work well even for non-normal data (Costello & Osborne, 2005). However, there are cases where it fails to find useful factors. `fa` offers several different estimation methods. A good alternative is `minres`, which often works well when maximum likelihood fails:

```r
attitude_fa <- fa(attitude, nfactors = 2, rotate = "oblimin", fm = "minres")
fa.diagram(attitude_fa, simple = FALSE)
```

Once again, the results are similar to what we saw before. In other examples, the results differ more. When choosing which estimation method and rotation to use, bear in mind that in an exploratory study, there is no harm in playing around with a few different methods. After all, your purpose is to generate hypotheses rather than confirm them, and looking at the data in a few different ways will help you do that.

To determine the number of factors that are appropriate for a particular dataset, we can draw a scree plot with `scree`. This is interpreted in the same way as for principal components analysis (Section 4.9) and centroid-based clustering (Section 4.10.3) - we look for an “elbow” in the plot, which tells us at which point adding more factors no longer contributes much to the model:

```r
scree(attitude, pc = FALSE)
```
A useful alternative version of this is provided by `fa.parallel`, which adds lines showing what the scree plot would look like for randomly generated uncorrelated data of the same size as the original dataset. As long as the blue line, representing the actual data, is higher than the red line, representing randomly generated data, adding more factors improves the model:

```r
fa.parallel(attitude, fm = "ml", fa = "fa")
```

Some older texts recommend that only factors with an eigenvalue (the y-axis in the scree plot) greater than 1 be kept in the model. It is widely agreed that this so-called Kaiser rule is inappropriate (Costello & Osborne, 2005), as it runs the risk of leaving out important factors.

Similarly, some older texts also recommend using principal components analysis to fit factor models. While the two are mathematically similar in that both in some sense reduce the dimensionality of the data, PCA and factor analysis are designed to target different problems. Factor analysis is concerned with an underlying causal structure where the unobserved factors affect the observed variables. In contrast, PCA simply seeks to create a small number of variables that summarise the variation in the data, which can work well even if there are no unobserved factors affecting the variables.

Exercise 4.33. Factor analysis only relies on the covariance or correlation matrix of your data. When using `fa` and other functions for factor analysis, you can input either a data frame or a covariance/correlation matrix. Read about the `ability.cov` data that comes shipped with R, and perform a factor analysis of it.

4.11.2 Latent class analysis

When there is a single categorical latent variable, factor analysis overlaps with clustering, which we studied in Section 4.10. Whether we think of the values of the latent variable as clusters, classes, factor levels, or something else is mainly a philosophical question - from a mathematical perspective, it doesn’t matter what name we use for them.

When observations from the same cluster are assumed to be uncorrelated, the resulting model is called *latent profile analysis*, which typically is handled using model-based clustering (Section 4.10.5). The special case where the observed variables are categorical is instead known as *latent class analysis*. This is common e.g. in analyses of survey data, and we’ll have a look at such an example in this section. The package that we’ll use for our analyses is called `poLCA` - let’s install it:

```r
install.packages("poLCA")
```
The National Mental Health Services Survey is an annual survey collecting information about mental health treatment facilities in the US. We’ll analyse data from the 2019 survey, courtesy of the Substance Abuse and Mental Health Data Archive, and try to find latent classes. Download nmhss-puf-2019.csv from the book’s web page, and set file_path to its path. We can then load and look at a summary of the data using:

```r
nmhss <- read.csv(file_path)
summary(nmhss)
```

All variables are categorical (except perhaps for the first one, which is an identifier). According to the survey’s documentation, negative values are used to represent missing values. For binary variables, 0 means no/non-presence and 1 means yes/presence.

Next, we’ll load the poLCA package and read the documentation for the function that we’ll use for the analysis.

```r
library(poLCA)
?poLCA
```

As you can see in the description of the data argument, the observed variables (called manifest variables here) are only allowed to contain consecutive integer values, starting from 1. Moreover, missing values should be represented by NA, and not by negative numbers (just as elsewhere in R!). We therefore need to make two changes to our data:

- Change negative values to NA,
- Change the levels of binary variables so that 1 means no/non-presence and 2 means yes/presence.

In our example, we’ll look at variables describing what treatments are available at the different facilities. Let’s create a new data frame for those variables:

```r
treatments <- nmhss[, names(nmhss)[17:30]]
summary(treatments)
```

To make the changes to the data that we need, we can do the following:

```r
# Change negative values to NA:
treatments[treatments < 0] <- NA

# Change binary variables from 0 and 1 to # 1 and 2:
treatments <- treatments + 1

# Check the results:
summary(treatments)
```
4.11. EXPLORATORY FACTOR ANALYSIS

We are now ready to get started with our analysis. To begin with, we will try to find classes based on whether or not the facilities offer the following five treatments:

- **TREATPSYCHOTHPRPY**: The facility offers individual psychotherapy,
- **TREATFAMTHRPY**: The facility offers couples/family therapy,
- **TREATGRPTHRPY**: The facility offers group therapy,
- **TREATCOGTHRPY**: The facility offers cognitive behavioural therapy,
- **TREATPSYCHOMED**: The facility offers psychotropic medication.

The `poLCA` function needs three inputs: a formula describing what observed variables to use, a data frame containing the observations, and `nclass`, the number of latent classes to find. To begin with, let’s try two classes:

```r
m <- poLCA(cbind(TREATPSYCHOTHPRPY, TREATFAMTHRPY, TREATGRPTHRPY, TREATCOGTHRPY, TREATPSYCHOMED) ~ 1, data = treatments, nclass = 2)
```

The output shows the probabilities of 1’s (no/non-presence) and 2’s (yes/presence) for the two classes. So, for instance, from the output

\[
\begin{array}{c|cc}
\text{TREATPSYCHOTHPRPY} & \text{Pr(1)} & \text{Pr(2)} \\
\hline
\text{class 1:} & 0.6628 & 0.3372 \\
\text{class 2:} & 0.0073 & 0.9927 \\
\end{array}
\]

we gather that 34% of facilities belonging to the first class offer individual psychotherapy, whereas 99% of facilities from the second class offer individual psychotherapy. Looking at the other variables, we see that the second class always has high probabilities of offering therapies, while the first class doesn’t. Interpreting this, we’d say that the second class contains facilities that offer a wide variety of treatments, and the first facilities that only offer some therapies. Finally, we see from the output that 88% of the facilities belong to the second class:

\[
\text{Estimated class population shares} \\
0.1167 0.8833
\]

We can visualise the class differences in a plot:

```r
plot(m)
```

To see which classes different observations belong to, we can use:

```r
m$predclass
```

Just as in a cluster analysis, it is often a good idea to run the analysis with different numbers of classes. Next, let’s try 3 classes:

```r
m <- poLCA(cbind(TREATPSYCHOTHPRPY, TREATFAMTHRPY, TREATGRPTHRPY, TREATCOGTHRPY, TREATPSYCHOMED) ~ 1, data = treatments, nclass = 3)
```
This time, we run into numerical problems - the model estimation has failed, as indicated by the following warning message:

ALERT: iterations finished, MAXIMUM LIKELIHOOD NOT FOUND

`polca` fits the model using a method known as the *EM algorithm*, which finds maximum likelihood estimates numerically. First, the observations are randomly assigned to the classes. Step by step, the observations are then moved between classes, until the optimal split has been found. It can however happen that more steps are needed to find the optimum (by default 1,000 steps are used), or that we end up with unfortunate initial class assignments that prevent the algorithm from finding the optimum. To attenuate this problem, we can increase the number of steps used, or run the algorithm multiple times, each with new initial class assignments. The `polca` arguments for this are `maxiter`, which controls the number of steps (or iterations) used, and `nrep`, which controls the number of repetitions with different initial assignments. We’ll increase both, and see if that helps. Note that this means that the algorithm will take longer to run:

```r
m <- polca(cbind(TREATPSYCHOTHERPY, TREATFAMTHERPY, TREATGRPTHERPY, TREATCOGTHERPY, TREATPSYCHOMED) ~ 1,
            data = treatments, nclass = 3,
            maxiter = 2500, nrep = 5)
```

These setting should do the trick for this dataset, and you probably won’t see a warning message this time. If you do, try increasing either number and run the code again.

The output that you get can differ between runs - in particular, the order of the classes can differ depending on initial assignments. Here is part of the output from my run:

<table>
<thead>
<tr>
<th>$TREATPSYCHOTHERPY$</th>
<th>Pr(1)</th>
<th>Pr(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>class 1:</td>
<td>0.0076</td>
<td>0.9924</td>
</tr>
<tr>
<td>class 2:</td>
<td>0.0068</td>
<td>0.9932</td>
</tr>
<tr>
<td>class 3:</td>
<td>0.6450</td>
<td>0.3550</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$TREATFAMTHERPY$</th>
<th>Pr(1)</th>
<th>Pr(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>class 1:</td>
<td>0.1990</td>
<td>0.8010</td>
</tr>
<tr>
<td>class 2:</td>
<td>0.0223</td>
<td>0.9777</td>
</tr>
<tr>
<td>class 3:</td>
<td>0.9435</td>
<td>0.0565</td>
</tr>
</tbody>
</table>
We can interpret this as follows:

- Class 1 (81 % of facilities): Offer all treatments, including psychotropic medication.
- Class 2 (7 % of facilities): Offer all treatments, except for psychotropic medication.
- Class 3 (12 % of facilities): Only offer some treatments, which may include psychotropic medication.

You can either let interpretability guide your choice of how many classes to include in your analysis, our use model fit measures like AIC and BIC, which are printed in the output and can be obtained from the model using:

```r
m$aic
m$bic
```

The lower these are, the better is the model fit.

If you like, you can add a covariate to your latent class analysis, which allows you to simultaneously find classes and study their relationship with the covariate. Let’s add the variable `PAYASST` (which says whether a facility offers treatment at no charge or minimal payment to clients who cannot afford to pay) to our data, and then use that as a covariate.
Add PAYASST variable to data, then change negative values
to NA's:
treatments$PAYASST <- nmhss$PAYASST

treatments$PAYASST[treatments$PAYASST < 0] <- NA

Run LCA with covariate:

m <- poLCA(cbind(TREATPSYCHOTHRPY, TREATFAMTHRPY,
 TREATGRPTHRPY, TREATCOGTHRPY,
 TREATPSYCHOMED) ~ PAYASST,
 data = treatments, nclass = 3,
 maxiter = 2500, nrep = 5)

My output from this model includes the following tables:

Fit for 3 latent classes:

| Coefficient | Std. error | t value | Pr(>|t|) |
|-------------|------------|---------|----------|
| (Intercept) | 0.10616 | 0.18197 | 0.583 | 0.570 |
| PAYASST | 0.43302 | 0.11864 | 3.650 | 0.003 |

| Coefficient | Std. error | t value | Pr(>|t|) |
|-------------|------------|---------|----------|
| (Intercept) | 1.88482 | 0.20605 | 9.147 | 0 |
| PAYASST | 0.59124 | 0.10925 | 5.412 | 0 |

The interpretation is that both class 2 and class 3 differ significantly from class 1 (the p-values in the Pr(>|t|) column are low), with the positive coefficients for PAYASST telling us that class 2 and 3 facilities are more likely to offer pay assistance than class 1 facilities.

Exercise 4.34. The cheating dataset from poLCA contains students’ answers to four questions about cheating, along with their grade point averages (GPA). Perform a latent class analysis using GPA as a covariate. What classes do you find? Does having a high GPA increase the probability of belonging to either class?
Chapter 5

Dealing with messy data

...or, put differently, welcome to the real world. Real datasets are seldom as tidy and clean as those you have seen in the previous examples in this book. On the contrary, real data is messy. Things will be out of place, and formatted in the wrong way. You’ll need to filter the rows to remove those that aren’t supposed to be used in the analysis. You’ll need to remove some columns and merge others. You will need to wrestle, clean, coerce, and coax your data until it finally has the right format. Only then will you be able to actually analyse it.

This chapter contains a number of examples that serve as cookbook recipes for common data wrangling tasks. And as with any cookbook, you’ll find yourself returning to some recipes more or less every day, until you know them by heart, while you never find the right time to use other recipes. You do definitely not have to know all of them by heart, and can always go back and look up a recipe that you need.

After working with the material in this chapter, you will be able to use R to:

- Handle numeric and categorical data,
- Manipulate and find patterns in text strings,
- Work with dates and times,
- Filter, subset, sort, and reshape your data using `data.table`, `dplyr`, and `tidyr`,
- Split and merge datasets,
- Scrape data from the web,
- Import data from different file formats.

5.1 Changing data types

In Exercise 3.1 you discovered that R implicitly coerces variables into other data types when needed. For instance, if you add a `numeric` to a `logical`, the result is
a numeric. And if you place them together in a vector, the vector will contain two numeric values:

```
TRUE + 5
v1 <- c(TRUE, 5)
v1
```

However, if you add a numeric to a character, the operation fails. If you put them together in a vector, both become character strings:

```
"One" + 5
v2 <- c("One", 5)
v2
```

There is a hierarchy for data types in R: logical < integer < numeric < character. When variables of different types are somehow combined (with addition, put in the same vector, and so on), R will coerce both to the higher ranking type. That is why v1 contained numeric variables (numeric is higher ranked than logical) and v2 contained character values (character is higher ranked than numeric).

Automatic coercion is often useful, but will sometimes cause problems. As an example, a vector of numbers may accidentally be converted to a character vector, which will confuse plotting functions. Luckily it is possible to convert objects to other data types. The functions most commonly used for this are `as.logical`, `as.numeric` and `as.character`. Here are some examples of how they can be used:

```
as.logical(1)       # Should be TRUE
as.logical("FALSE") # Should be FALSE
as.numeric(TRUE)    # Should be 1
as.numeric("2.718282") # Should be numeric 2.718282
as.character(2.718282) # Should be the string "2.718282"
as.character(TRUE)  # Should be the string "TRUE"
```

A word of warning though - conversion only works if R can find a natural conversion between the types. Here are some examples where conversion fails. Note that only some of them cause warning messages:

```
as.numeric("two")     # Should be 2
as.numeric("1+1")     # Should be 2
as.numeric("2,718282") # Should be numeric 2.718282
as.logical("Vaccines cause autism") # Should be FALSE
```

```
Exercise 5.1. The following tasks are concerned with converting and checking data types:
```
1. What happens if you apply `as.logical` to the numeric values 0 and 1? What happens if you apply it to other numbers?

2. What happens if you apply `as.character` to a vector containing numeric values?

3. The functions `is.logical`, `is.numeric` and `is.character` can be used to check if a variable is a logical, numeric or character, respectively. What type of object do they return?

4. Is NA a logical, numeric or character?

5.2 Working with lists

A data structure that is very convenient for storing data of different types is list. You can think of a list as a data frame where you can put different types of objects in each column: like a numeric vector of length 5 in the first, a data frame in the second and a single character in the third\(^1\). Here is an example of how to create a list using the function of the same name:

```r
my_list <- list(my_numbers = c(86, 42, 57, 61, 22),
                 my_data = data.frame(a = 1:3, b = 4:6),
                 my_text = "Lists are the best."
)
```

To access the elements in the list, we can use the same $ notation as for data frames:

```r
my_list$my_numbers
my_list$my_data
my_list$my_text
```

In addition, we can access them using indices, but using double brackets:

```r
my_list[[1]]
my_list[[2]]
my_list[[3]]
```

To access elements within the elements of lists, additional brackets can be added. For instance, if you wish to access the second element of the `my_numbers` vector, you can use either of these:

```r
my_list[[1]][2]
my_list$my_numbers[2]
```

\(^1\)In fact, the opposite is true: under the hood, a data frame is a list of vectors of equal length.
5.2.1 Splitting vectors into lists

Consider the airquality dataset, which among other things describe the temperature on each day during a five-month period. Suppose that we wish to split the airquality$Temp vector into five separate vectors: one for each month. We could do this by repeated filtering, e.g.

```r
temp_may <- airquality$Temp[airquality$Month == 5]
temp_june <- airquality$Temp[airquality$Month == 6]
# ...and so on.
```

Apart from the fact that this isn’t a very good-looking solution, this would be infeasible if we needed to split our vector into a larger number of new vectors. Fortunately, there is a function that allows us to split the vector by month, storing the result as a list - split:

```r
temps <- split(airquality$Temp, airquality$Month)
temps
```

To access the temperatures for June:
```
temps$’6’
temps[[2]]
```

To give more informative names to the elements in the list:
```
names(temps) <- c("May", "June", "July", "August", "September")
temps$June
```

Note that, in breach of the rules for variable names in R, the original variable names here were numbers (actually character variables that happened to contain numeric characters). When accessing them using $ notation, you need to put them between backticks (’), e.g. temps$’6’, to make it clear that 6 is a variable name and not a number.

5.2.2 Collapsing lists into vectors

Conversely, there are times where you want to collapse a list into a vector. This can be done using unlist:

```r
unlist(temps)
```

Exercise 5.2. Load the vas.csv data from Exercise 3.8. Split the VAS vector so that you get a list containing one vector for each patient. How can you then access the VAS values for patient 212?
5.3 Working with numbers

A lot of data analyses involve numbers, which typically are represented as numeric values in R. We’ve already seen in Section 2.4.5 that there are numerous mathematical operators that can be applied to numbers in R. But there are also other functions that come in handy when working with numbers.

5.3.1 Rounding numbers

At times you may want to round numbers, either for presentation purposes or for some other reason. There are several functions that can be used for this:

```r
a <- c(2.1241, 3.86234, 4.5, -4.5, 10000.1001)
round(a, 3)  # Rounds to 3 decimal places
signif(a, 3) # Rounds to 3 significant digits
ceiling(a)  # Rounds up to the nearest integer
floor(a)    # Rounds down to the nearest integer
trunc(a)    # Rounds to the nearest integer, toward 0
# (note the difference in how 4.5 and -4.5 are treated!)
```

5.3.2 Sums and means in data frames

When working with numerical data, you’ll frequently find yourself wanting to compute sums or means of either columns or rows of data frames. The `colSums`, `rowSums`, `colMeans` and `rowMeans` functions can be used to do this. Here is an example with an expanded version of the `bookstore` data, where three purchases have been recorded for each customer:

```r
bookstore2 <- data.frame(purchase1 = c(20, 59, 2, 12, 22, 160, 34, 34, 29),
                          purchase2 = c(14, 67, 9, 20, 20, 81, 19, 55, 8),
                          purchase3 = c(4, 62, 11, 18, 33, 57, 24, 49, 29))

colSums(bookstore2)  # The total amount for customers' 1st, 2nd and 3rd purchases
rowSums(bookstore2)  # The total amount for each customer
colMeans(bookstore2)  # Mean purchase for 1st, 2nd and 3rd purchases
rowMeans(bookstore2)  # Mean purchase for each customer
```

Moving beyond sums and means, in Section 6.5 you’ll learn how to apply any function to the rows or columns of a data frame.
5.3.3 Summaries of series of numbers

When a numeric vector contains a series of consecutive measurements, as is the case, e.g., in a time series, it is often of interest to compute various cumulative summaries. For instance, if the vector contains the daily revenue of a business during a month, it may be of value to know the total revenue up to each day - that is, the cumulative sum for each day.

Let’s return to the a10 data from Section 4.6, which described the monthly anti-diabetic drug sales in Australia during 1991-2008.

```r
library(fpp2)
a10
```

Elements 7 to 18 contain the sales for 1992. We can compute the total, highest and smallest monthly sales up to and including each month using `cumsum`, `cummax` and `cummin`:

```r
a10[7:18]
cumsum(a10[7:18])  # Total sales
cummax(a10[7:18])   # Highest monthly sales
cummin(a10[7:18])   # Lowest monthly sales
```

```
# Plot total sales up to and including each month:
plot(1:12, cumsum(a10[7:18]),
     xlab = "Month",
     ylab = "Total sales",
     type = "b")
```

In addition, the `cumprod` function can be used to compute cumulative products.

At other times, we are interested in studying run lengths in series, that is, the lengths of runs of equal values in a vector. Consider the `upp_temp` vector defined in the code chunk below, which contains the daily temperatures in Uppsala, Sweden, in February 2020.

```r
upp_temp <- c(5.3, 3.2, -1.4, -3.4, -0.6, -0.6, -0.8, 2.7, 4.2, 5.7, 3.1, 2.3, -0.6, -1.3, 2.9, 6.9, 6.2, 6.3, 3.2, 0.6, 5.5, 6.1, 4.4, 1.0, -0.4, -0.5, -1.5, -1.2, 0.6)
```

It could be interesting to look at runs of sub-zero days, i.e., consecutive days with sub-zero temperatures. The `rle` function counts the lengths of runs of equal values in a vector. To find the length of runs of temperatures below or above zero we can use the vector defined by the condition `upp_temp < 0`, the values of which are `TRUE` on sub-zero days and `FALSE` when the temperature is 0 or higher. When we apply `rle` to this vector, it returns the length and value of the runs:

```
2Courtesy of the Department of Earth Sciences at Uppsala University.
```
5.3. WORKING WITH NUMBERS

rle(upp_temp < 0)

We first have a 2-day run of above zero temperatures (FALSE), then a 5-day run of sub-zero temperatures (TRUE), then a 5-day run of above zero temperatures, and so on.

5.3.4 Scientific notation 1e-03

When printing very large or very small numbers, R uses scientific notation, meaning that 7,000,000 (7 followed by 6 zeroes) is displayed as (the mathematically equivalent) $7 \cdot 10^6$ and 0.0000007 is displayed as $7 \cdot 10^{-7}$. Well, almost, the ten raised to the power of x bit isn’t really displayed as 10^x, but as e+x, a notation used in many programming languages and calculators. Here are some examples:

7000000
0.0000007
7e+07
exp(30)

Scientific notation is a convenient way to display large numbers, but it’s not always desirable. If you just want to print the number, the format function can be used to convert it to a character, suppressing scientific notation:

format(7000000, scientific = FALSE)

If you still want your number to be a numeric (as you often do), a better choice is to change the option for when R uses scientific notation. This can be done using the scipen argument in the options function:

options(scipen = 1000)
7000000
0.0000007
7e+07
exp(30)

To revert this option back to the default, you can use:

options(scipen = 0)
7000000
0.0000007
7e+07
exp(30)

Note that this option only affects how R prints numbers, and not how they are treated in computations.
5.3.5 Floating point arithmetics

Some numbers cannot be written in finite decimal forms. Take $1/3$ for example, the decimal form of which is

\[0.33333333333333333333333333333333 \ldots \]

Clearly, the computer cannot store this number exactly, as that would require an infinite memory\(^3\). Because of this, numbers in computers are stored as floating point numbers, which aim to strike a balance between range (being able to store both very small and very large numbers) and precision (being able to represent numbers accurately). Most of the time, calculations with floating points yield exactly the results that we’d expect, but sometimes these non-exact representations of numbers will cause unexpected problems. If we wish to compute $1.5 - 0.2$ and $1.1 - 0.2$, say, we could of course use R for that. Let’s see if it gets the answers right:

```
1.5 - 0.2
1.5 - 0.2 == 1.3  # Check if 1.5-0.2=1.3
1.1 - 0.2
1.1 - 0.2 == 0.9  # Check if 1.1-0.2=0.9
```

The limitations of floating point arithmetics causes the second calculation to fail. To see what has happened, we can use `sprintf` to print numbers with 30 decimals (by default, R prints a rounded version with fewer decimals):

```
sprintf("%.30f", 1.1 - 0.2)
sprintf("%.30f", 0.9)
```

The first 12 decimals are identical, but after that the two numbers $1.1 - 0.2$ and 0.9 diverge. In our other example, $1.5 - 0.2$, we don’t encounter this problem - both $1.5 - 0.2$ and 0.3 have the same floating point representation:

```
sprintf("%.30f", 1.5 - 0.2)
sprintf("%.30f", 1.3)
```

The order of the operations also matters in this case. The following three calculations would all yield identical results if performed with real numbers, but in floating point arithmetics the results differ:

```
1.1 - 0.2 - 0.9
1.1 - 0.9 - 0.2
1.1 - (0.9 + 0.2)
```

In most cases, it won’t make a difference whether a variable is represented as $0.90000000000000013 \ldots$ or $0.9000000000000002 \ldots$, but in some cases tiny differences like that can propagate and cause massive problems. A famous example of this

\(^3\)This is not strictly speaking true; if we use base 3, $1/3$ is written as 0.1 which can be stored in a finite memory. But then other numbers become problematic instead.
5.3. WORKING WITH NUMBERS

involves the US Patriot surface-to-air defence system, which at the end of the first
Gulf war missed an incoming missile due to an error in floating point arithmetics. It
is important to be aware of the fact that floating point arithmetics occasionally will
yield incorrect results. This can happen for numbers of any size, but is more likely
to occur when very large and very small numbers appear in the same computation.

So, \(1.1 - 0.2\) and \(0.9\) may not be the same thing in floating point arithmetics, but
at least they are nearly the same thing. The == operator checks if two numbers are
exactly equal, but there is an alternative that can be used to check if two numbers
are nearly equal: `all.equal`. If the two numbers are (nearly) equal, it returns TRUE,
and if they are not, it returns a description of how they differ. In order to avoid the
latter, we can use the `isTRUE` function to return FALSE instead:

\[
1.1 - 0.2 == 0.9 \\
\text{all.equal}(1.1 - 0.2, 0.9) \\
\text{all.equal}(1, 2) \\
isTRUE(\text{all.equal}(1, 2))
\]

Exercise 5.3. These tasks showcase some problems that are commonly faced when
working with numeric data:

1. The vector `props <- c(0.1010, 0.2546, 0.6009, 0.0400, 0.0035)` con-
tains proportions (which, by definition, are between 0 and 1). Convert the
proportions to percentages with one decimal place.

2. Compute the highest and lowest temperatures up to and including each day in
the `airquality` dataset.

3. What is the longest run of days with temperatures above 80 in the `airquality`
dataset?

Exercise 5.4. These tasks are concerned with floating point arithmetics:

1. Very large numbers, like \(10e500\), are represented by Inf (infinity) in R. Try to
find out what the largest number that can be represented as a floating point
number in R is.

2. Due to an error in floating point arithmetics, `sqrt(2)^2 - 2` is not equal to 0.
Change the order of the operations so that the results is 0.

\(^4\)Not in R though.
5.4 Working with factors

In Sections 2.6.2 and 2.8 we looked at how to analyse and visualise categorical data, i.e. data where the variables can take a fixed number of possible values that somehow correspond to groups or categories. But so far we haven’t really gone into how to handle categorical variables in R.

Categorical data is stored in R as factor variables. You may ask why a special data structure is needed for categorical data, when we could just use character variables to represent the categories. Indeed, the latter is what R does by default, e.g. when creating a data.frame object or reading data from .csv and .xlsx files.

Let’s say that you’ve conducted a survey on students’ smoking habits. The possible responses are Never, Occasionally, Regularly and Heavy. From 10 students, you get the following responses:

```
smoke <- c("Never", "Never", "Heavy", "Never", "Occasionally", "Never", "Never", "Regularly", "Regularly", "No")
```

Note that the last answer is invalid - No was not one of the four answers that were allowed for the question.

You could use table to get a summary of how many answers of each type that you got:

```
table(smoke)
```

But the categories are not presented in the correct order! There is a clear order between the different categories, Never < Occasionally < Regularly < Heavy, but table doesn’t present the results in that way. Moreover, R didn’t recognise that No was an invalid answer, and treats it just the same as the other categories.

This is where factor variables come in. They allow you to specify which values your variable can take, and the ordering between them (if any).

5.4.1 Creating factors

When creating a factor variable, you typically start with a character, numeric or logical variable, the values of which are turned into categories. To turn the smoke vector that you created in the previous section into a factor, you can use the factor function:

```
smoke2 <- factor(smoke)
```

You can inspect the elements, and levels, i.e. the values that the categorical variable takes, as follows:

```
smoke2
levels(smoke2)
```
So far, we haven’t solved neither the problem of the categories being in the wrong order nor that invalid No value. To fix both these problems, we can use the levels argument in factor:

```r
smoke2 <- factor(smoke, levels = c("Never", "Occasionally", "Regularly", "Heavy"),
                  ordered = TRUE)

# Check the results:
smoke2
levels(smoke2)
table(smoke2)
```

You can control the order in which the levels are presented by choosing which order we write them in in the levels argument. The ordered = TRUE argument specifies that the order of the variables is meaningful. It can be excluded in cases where you wish to specify the order in which the categories should be presented purely for presentation purposes (e.g. when specifying whether to use the order Male/Female/Other or Female/Male/Other). Also note that the No answer now became an NA, which in the case of factor variables represents both missing observations and invalid observations. To find the values of smoke that became NA in smoke2 you can use which and is.na:

```r
smoke[which(is.na(smoke2))]
```

By checking the original values of the NA elements, you can see if they should be excluded from the analysis or recoded into a proper category (No could for instance be recoded into Never). In Section 5.5.3 you’ll learn how to replace values in larger datasets automatically using regular expressions.

5.4.2 Changing factor levels

When we created smoke2, one of the elements became an NA. NA was however not included as a level of the factor. Sometimes it is desirable to include NA as a level, for instance when you want to analyse rows with missing data. This is easily done using the addNA function:

```r
smoke2 <- addNA(smoke2)
```

If you wish to change the name of one or more of the factor levels, you can do it directly via the levels function. For instance, we can change the name of the NA category, which is the 5th level of smoke2, as follows:

```r
levels(smoke2)[5] <- "Invalid answer"
```

The above solution is a little brittle in that it relies on specifying the index of the level name, which can change if we’re not careful. More robust solutions using the data.table and dplyr packages are presented in Section 5.7.6.
Finally, if you’ve added more levels than what are actually used, these can be dropped using the `droplevels` function:

```r
smoke2 <- factor(smoke, levels = c("Never", "Occasionally", "Regularly", "Heavy", "Constantly"), ordered = TRUE)
levels(smoke2)
smoke2 <- droplevels(smoke2)
levels(smoke2)
```

5.4.3 Changing the order of levels

Now suppose that we’d like the levels of the `smoke2` variable to be presented in the reverse order: *Heavy*, *Regularly*, *Occasionally*, and *Never*. This can be done by a new call to `factor`, where the new level order is specified in the `levels` argument:

```r
smoke2 <- factor(smoke2, levels = c("Heavy", "Regularly", "Occasionally", "Never"))

# Check the results:
levels(smoke2)
```

5.4.4 Combining levels

Finally, `levels` can be used to merge categories by replacing their separate names with a single name. For instance, we can combine the smoking categories *Occasionally*, *Regularly*, and *Heavy* to a single category named *Yes*. Assuming that these are first, second and third in the list of names (as will be the case if you’ve run the last code chunk above), here’s how to do it:

```r
levels(smoke2)[1:3] <- "Yes"

# Check the results:
levels(smoke2)
```

Alternative ways to do this are presented in Section 5.7.6.

Exercise 5.5. In Exercise 3.7 you learned how to create a `factor` variable from a `numeric` variable using `cut`. Return to your solution (or the solution at the back of the book) and do the following:

1. Change the category names to *Mild*, *Moderate* and *Hot*.
2. Combine Moderate and Hot into a single level named Hot.

Exercise 5.6. Load the msleep data from the ggplot2 package. Note that categorical variable vore is stored as a character. Convert it to a factor by running msleep$vore <- factor(msleep$vore).

1. How are the resulting factor levels ordered? Why are they ordered in that way?
2. Compute the mean value of sleep_total for each vore group.
3. Sort the factor levels according to their sleep_total means. Hint: this can be done manually, or more elegantly using e.g. a combination of the functions rank and match in an intermediate step.

5.5 Working with strings

Text in R is represented by **character** strings. These are created using double or single quotes. I recommend double quotes for three reasons. First, it is the default in R, and is the recommended style (see e.g. ?Quotes). Second, it improves readability - code with double quotes is easier to read because double quotes are easier to spot than single quotes. Third, it will allow you to easily use apostrophes in your strings, which single quotes don’t (because apostrophes will be interpreted as the end of the string). Single quotes can however be used if you need to include double quotes inside your string:

```r
# This works:
text1 <- "An example of a string. Isn't this great?"

# This doesn't work:

text1_fail <- 'An example of a string. Isn't this great?'

text2_fail <- "Another example of a so-called "string"."
```

If you check what these two strings look like, you’ll notice something funny about text2:

```r
text1
text2
```

R has put backslash characters, \\', before the double quotes. The backslash is called an escape character, which invokes a different interpretation of the character that follows it. In fact, you can use this to put double quotes inside a string that you define using double quotes:

```r
text2_success <- "Another example of a so-called \"string\"."
```

There are a number of other special characters that can be included using a backslash:
\n for a line break (a new line) and \t for a tab (a long whitespace) being the most important:

```
text3 <- "Text...\n\tWith indented text on a new line!"
```

To print your string in the Console in a way that shows special characters instead of their escape character-versions, use the function `cat`:

```
cat(text3)
```

You can also use `cat` to print the string to a text file...

```
cat(text3, file = "new_findings.txt")
```

...and to append text at the end of a text file:

```
cat("Let's add even more text!", file = "new_findings.txt",
     append = TRUE)
```

(Check the output by opening `new_findings.txt`!)

5.5.1 Concatenating strings

If you wish to concatenate multiple strings, `cat` will do that for you:

```
first <- "This is the beginning of a sentence"
second <- "and this is the end."
cat(first, second)
```

By default, `cat` places a single white space between the two strings, so that "This is the beginning of a sentence" and "and this is the end." are concatenated to "This is the beginning of a sentence and this is the end.". You can change that using the `sep` argument in `cat`. You can also add as many strings as you like as input:

```
cat(first, second, sep = ";
")
cat(first, second, sep = "\n")
cat(first, second, sep = "")
cat(first, second, "\n", "And this is another sentence.")
```

At other times, you want to concatenate two or more strings without printing them. You can then use `paste` in exactly the same way as you’d use `cat`, the exception being that `paste` returns a string instead of printing it.

```
my_sentence <- paste(first, second, sep = ";
")
my_novel <- paste(first, second, "\n",
   "And this is another sentence.")
```

\footnote{See ?Quotes for a complete list.}
5.5. WORKING WITH STRINGS

Finally, if you wish to create a number of similar strings based on information from other variables, you can use \texttt{sprintf}, which allows you to write a string using \texttt{%s} as a placeholder for the values that should be pulled from other variables:

\begin{verbatim}
names <- c("Irma", "Bea", "Lisa")
ages <- c(5, 59, 36)
sprintf("%s is %s years old.", names, ages)
\end{verbatim}

There are many more uses of \texttt{sprintf} (we've already seen some in Section 5.3.5), but this enough for us for now.

5.5.2 Changing case

If you need to translate characters from lowercase to uppercase or vice versa, that can be done using \texttt{toupper} and \texttt{tolower}:

\begin{verbatim}
my_string <- "SOMETIMES I SCREAM (and sometimes I whisper)."
toupper(my_string)
tolower(my_string)
\end{verbatim}

If you only wish to change the case of some particular element in your string, you can use \texttt{substr}, which allows you to access substrings:

\begin{verbatim}
months <- c("january", "february", "march", "april")

Replacing characters 2-4 of months[4] with "pri":
substr(months[4], 2, 4) <- "pri"
months

Replacing characters 1-1 (i.e. character 1) of each element of month
with its uppercase version:
substr(months, 1, 1) <- toupper(substr(months, 1, 1))
months
\end{verbatim}

5.5.3 Finding patterns using regular expressions

Regular expressions, or regexps for short, are special strings that describe patterns. They are extremely useful if you need to find, replace or otherwise manipulate a number of strings depending on whether or not a certain pattern exists in each one of them. For instance, you may want to find all strings containing only numbers and
convert them to numeric, or find all strings that contain an email address and remove said addresses (for censoring purposes, say). Regular expressions are incredibly useful, but can be daunting. Not everyone will need them, and if this all seems a bit too much to you can safely skip this section, or just skim through it, and return to it at a later point.

To illustrate the use of regular expressions we will use a sheet from the projects-email.xlsx file from the books’ web page. In Exercise 3.9, you explored the second sheet in this file, but here we’ll use the third instead. Set `file_path` to the path to the file, and then run the following code to import the data:

```r
library(openxlsx)
contacts <- read.xlsx(file_path, sheet = 3)
str(contacts)
```

There are now three variables in `contacts`. We’ll primarily be concerned with the third one: `Address`. Some people have email addresses attached to them, others have postal addresses and some have no address at all:

```
contacts$Address
```

You can find loads of guides on regular expressions online, but few of them are easy to use with R, the reason being that regular expressions in R sometimes require escape characters that aren’t needed in some other programming languages. In this section we’ll take a look at regular expressions, as they are written in R.

The basic building blocks of regular expressions are patterns consisting of one or more characters. If, for instance, we wish to find all occurrences of the letter y in a vector of strings, the regular expression describing that “pattern” is simply "y". The functions used to find occurrences of patterns are called `grep` and `grepl`. They differ only in the output they return: `grep` returns the indices of the strings containing the pattern, and `grepl` returns a logical vector with TRUE at indices matching the patterns and FALSE at other indices.

To find all addresses containing a lowercase y, we use `grep` and `grepl` as follows:

```
grep("y", contacts$Address)
grepl("y", contacts$Address)
```

Note how both outputs contain the same information presented in different ways.

In the same way, we can look for word or substrings. For instance, we can find all addresses containing the string "Edin":

```
grep("Edin", contacts$Address)
grepl("Edin", contacts$Address)
```

Similarly, we can also look for special characters. Perhaps we can find all email
addresses by looking for strings containing the @ symbol:

```r
grep("@", contacts$Address)
grepl("@", contacts$Address)
```

To display the addresses matching the pattern:
contacts$Address[grep("@", contacts$Address)]

Interestingly, this includes two rows that aren’t email addresses. To separate the email addresses from the other rows, we’ll need a more complicated regular expression, describing the pattern of an email address in more general terms. Here are four examples or regular expressions that’ll do the trick:

```r
grep(".+@.+.+", contacts$Address)
grep(".+@.+.\..+", contacts$Address)
grep("[[:graph:]]+@([[:graph:]]+\]|:\:alpha:+)+", contacts$Address)
grep("[[:alnum:]]+.\-+@([[:alnum:]]+.\-+\.|:\:alpha:+)+", contacts$Address)
```

To try to wrap our head around what these mean we’ll have a look at the building blocks of regular expressions. These are:

- Patterns describing a single character.
- Patterns describing a class of characters, e.g. letters or numbers.
- Repetition quantifiers describing how many repetitions of a pattern to look for.
- Other operators.

We’ve already looked at single character expressions, as well as the multi-character expression "Edin" which simply is a combination of four single-character expressions. Patterns describing classes of characters, e.g. characters with certain properties, are denoted by brackets [] (for manually defined classes) or double brackets [[]] (for predefined classes). One example of the latter is ":[[:digit:]]" which is a pattern that matches all digits: 0 1 2 3 4 5 6 7 8 9. Let’s use it to find all addresses containing a number:

```r
grep("[[:digit:]]", contacts$Address)
contacts$Address[grep("[[:digit:]]", contacts$Address)]
```

Some important predefined classes are:

- `[[:lower:]]` matches lowercase letters,
- `[[:upper:]]` matches UPPERCASE letters,
- `[[:alpha:]]` matches both lowercase and UPPERCASE letters,
- `[[:digit:]]` matches digits: 0 1 2 3 4 5 6 7 8 9,
- `[[:alnum:]]` matches alphanumeric characters (alphabetic characters and digits),
- `[[:punct:]]` matches punctuation characters: ! " # $ % & ' () * + , - . / : ; < = > ? [\] ^ _ `{ } | ~`,
• [:space:] matches space characters: space, tab, newline, and so on,
• [:graph:] matches letters, digits, and punctuation characters,
• [:print:] matches letters, digits, punctuation characters, and space characters,
• . matches any character.

Examples of manually defined classes are:
• [abcd] matches a, b, c, and d,
• [a-d] matches a, b, c, and d,
• [aA12] matches a, A, 1 and 2,
• [.] matches .,
• [.,] matches . and ,,
• [^abcd] matches anything except a, b, c, or d.

So for instance, we can find all addresses that don’t contain at least one of the letters y and z using:

```
grep("[^yz]", contacts$Address)
```

```
contacts$Address[grep("[^yz]", contacts$Address)]
```

All of these patterns can be combined with patterns describing a single character:

• gr[ea]y matches grey and gray (but not greay!),
• b[^o]g matches bag, beg, and similar strings, but not bog,
• [.]com matches .com.

When using the patterns above, you only look for a single occurrence of the pattern. Sometimes you may want a pattern like a word of 2-4 letters or any number of digits in a row. To create these, you add repetition patterns to your regular expression:

• ? means that the preceding patterns is matched at most once, i.e 0 or 1 time,
• * means that the preceding pattern is matched 0 or more times,
• + means that the preceding pattern is matched at least once, i.e. 1 time or more,
• {n} means that the preceding pattern is matched exactly n times,
• {n,} means that the preceding pattern is matched at least n times, i.e. n times or more,
• {n,m} means that the preceding pattern is matched at least n times but not more than m times.

Here are some examples of how repetition patterns can be used:

```
# There are multiple ways of finding strings containing two n's
# in a row:
contacts$Address[grep("nn", contacts$Address)]
contacts$Address[grep("n{2}" , contacts$Address)]
```

```
# Find strings with words beginning with an uppercase letter, followed
# by at least one lowercase letter:
```
5.5. WORKING WITH STRINGS

contacts$Address[grep("[[:upper:]][[:lower:]]+", contacts$Address)]

Find strings with words beginning with an uppercase letter, followed
by at least six lowercase letters:
contacts$Address[grep("[[:upper:]][[:lower:]]{6,}", contacts$Address)]

Find strings containing any number of letters, followed by any
number of digits, followed by a space:
contacts$Address[grep("[[:alpha:]]+[[:digit:]]+[[:space:]]",
contacts$Address)]

Finally, there are some other operators that you can use to create even more complex patterns:

- `|` alteration, picks one of multiple possible patterns. For example, `ab|bc` matches `ab` or `bc`.
- `()` parentheses are used to denote a subset of an expression that should be evaluated separately. For example, `colo|our` matches `colo` or `our` while `colo(|ou)r` matches `color` or `colour`.
- `^`, when used outside of brackets `[]`, means that the match should be found at the start of the string. For example, `^a` matches strings beginning with `a`, but not "dad".
- `$` means that the match should be found at the end of the string. For example, `a$` matches strings ending with `a`, but not "dad".
- `\` escape character that can be used to match special characters like `., ^` and `$ (\.\., \-, \$).

This may seem like a lot (and it is!), but there are in fact many more possibilities when working with regular expression. For the sake of some sorts of brevity, we’ll leave it at this for now though.

Let’s return to those email addresses. We saw three regular expressions that could be used to find them:

```
grep(".+@[.]+", contacts$Address)
grep(".+[\-]+", contacts$Address)
grep("[[:graph:]]+[@[[:graph:]]+[.][:alpha:]]", contacts$Address)
grep("[[:alnum:]._-]+[@[[:alnum:]._-]+[.][:alpha:]]",
contacts$Address)
```

The first two of these both specify the same pattern: *any number of any characters, followed by an @, followed by any number of any characters, followed by a period .*, *followed by any number of characters*. This will match email addresses, but would also match strings like "?="/*@!a??", which isn’t a valid email address. In this case, that’s not a big issue, as our goal was to find addresses that looked like email addresses, and not to verify that the addresses were valid.
The third alternative has a slightly different pattern: *any number of letters, digits, and punctuation characters, followed by an @, followed by any number of letters, digits, and punctuation characters, followed by a period ., followed by any number of letters*. This too would match "=?)(/x@!.a??" as it allows punctuation characters that don’t usually occur in email addresses. The fourth alternative, however, won’t match "=?)(/x@!.a??" as it only allows letters, digits and the symbols . , _ and - in the name and domain name of the address.

5.5.4 Substitution

An important use of regular expressions is in substitutions, where the parts of strings that match the pattern in the expression are replaced by another string. There are two email addresses in our data that contain (a) instead of @:

```r
contacts$Address[grep("[(]a[)]", contacts$Address)]
```

If we wish to replace the (a) by @, we can do so using `sub` and `gsub`. The former replaces only the first occurrence of the pattern in the input vector, whereas the latter replaces all occurrences.

```r
contacts$Address[grep("[(]a[)]", contacts$Address)]
sub("[(]a[)]", "@", contacts$Address) # Replace first occurrence
gsub("[(]a[)]", "@", contacts$Address) # Replace all occurrences
```

5.5.5 Splitting strings

At times you want to extract only a part of a string, for example if measurements recorded in a column contains units, e.g. 66.8 kg instead of 66.8. To split a string into different parts, we can use `strsplit`.

As an example, consider the email addresses in our `contacts` data. Suppose that we want to extract the user names from all email addresses, i.e. remove the @domain.topdomain part. First, we store all email addresses from the data in a new vector, and then we split them at the @ sign:

```r
e-mails <- contacts$Address[grepl("(/[[:alnum:]:_\-]+@[[:alnum:]:_\-]+\.)[[:alpha:]]+", contacts$Address)]
e-mails_split <- strsplit(emails, "@")
e-mails_split
```

`emails_split` is a *list*. In this case, it seems convenient to convert the split strings into a matrix using `unlist` and `matrix` (you may want to have a quick look at Exercise 3.3 to re-familiarise yourself with `matrix`):

```r
e-mails_split <- unlist(emails_split)
```
5.5. WORKING WITH STRINGS

```r
# Store in a matrix with length(emails_split)/2 rows and 2 columns:
emails_matrix <- matrix(emails_split,
                        nrow = length(emails_split)/2,
                        ncol = 2,
                        byrow = TRUE)

# Extract usernames:
emails_matrix[,1]
```

Similarly, when working with data stored in data frames, it is sometimes desirable to split a column containing strings into two columns. Some convenience functions for this are discussed in Section 5.11.3.

5.5.6 Variable names

Variable names can be very messy, particularly when they are imported from files. You can access and manipulate the variable names of a data frame using `names`:

```r
names(contacts)
names(contacts)[1] <- "ID number"
grep("[aA]\", names(contacts))
```

Exercise 5.7. Download the file `handkerchief.csv` from the book’s web page. It contains a short list of prices of Italian handkerchiefs from the 1769 publication *Prices in those branches of the weaving manufactory, called, the black branch, and, the fancy branch.* Load the data in a data frame in R and then do the following:

1. Read the documentation for the function `nchar`. What does it do? Apply it to the `Italian.handkerchief` column of your data frame.
2. Use `grep` to find out how many rows of the `Italian.handkerchief` column that contain numbers.
3. Find a way to extract the prices in shillings (S) and pence (D) from the `Price` column, storing these in two new numeric variables in your data frame.

Exercise 5.8. Download the file `oslo-biomarkers.xlsx` data from the book’s web page. It contains data from a medical study about patients with disc herniations, performed at the Oslo University Hospital, Ullevål (this is a modified\(^6\) version of the data analysed by Moen et al. (2016)). Blood samples were collected from a number of patients with disc herniations at three time points: 0 weeks (first visit at the hospital),

\(^6\)For patient confidentiality purposes.
6 weeks and 12 months. The levels of some biomarkers related to inflammation were measured in each blood sample. The first column in the spreadsheet contains information about the patient ID and the time point of sampling. Load the data and check its structure. Each patient is uniquely identified by their ID number. How many patients were included in the study?

Exercise 5.9. What patterns do the following regular expressions describe? Apply them to the `Address` vector of the `contacts` data to check that you interpreted them correctly.

1. "$g"
2. "^[^[:digit:]]"
3. "a(s|l)"
4. "^[[:lower:]]+[.]^[[:lower:]]+"

Exercise 5.10. Write code that, given a string, creates a vector containing all words from the string, with one word in each element and no punctuation marks. Apply it to the following string to check that it works:

```r
x <- "This is an example of a sentence, with 10 words. Here are 4 more!"
```

5.6 Working with dates and times

Data describing dates and times can be complex, not least because they can be written in so many different formats. 1 April 2020 can be written as `2020-04-01`, `20/04/01`, `200401`, `1/4 2020`, `4/1/20`, `1 Apr 20`, and a myriad of other ways. 5 past 6 in the evening can be written as `18:05` or `6.05 pm`. In addition to this ambiguity, time zones, daylight saving time, leap years and even leap seconds make working with dates and times even more complicated.

The default in R is to use the ISO8601 standards, meaning that dates are written as `YYYY-MM-DD` and that times are written using the 24-hour `hh:mm:ss` format. In order to avoid confusion, you should always use these, unless you have *very* strong reasons not to.

Dates in R are represented as `Date` objects, and dates with times as `POSIXct` objects. The examples below are concerned with `Date` objects, but you will explore `POSIXct` too, in Exercise 5.12.

5.6.1 Date formats

The `as.Date` function tries to coerce a `character` string to a date. For some formats, it will automatically succeed, whereas for others, you have to provide the format of
the date manually. To complicate things further, what formats work automatically will depend on your system settings. Consequently, the safest option is always to specify the format of your dates, to make sure that the code still will run if you at some point have to execute it on a different machine. To help describe date formats, R has a number of tokens to describe days, months and years:

- `%d` - day of the month as a number (01-31).
- `%m` - month of the year as a number (01-12).
- `%y` - year without century (00-99).
- `%Y` - year with century (e.g. 2020).

Here are some examples of date formats, all describing 1 April 2020 - try them both with and without specifying the format to see what happens:

```r
as.Date("2020-04-01")
as.Date("2020-04-01", format = "%Y-%m-%d")
as.Date("4/1/20")
as.Date("4/1/20", format = "%m/%d/%y")
```

Sometimes dates are expressed as the number of days since a certain date. For instance, 1 April 2020 is 43,920 days after 1 January 1900:
```
as.Date(43920, origin = "1900-01-01")
```

If the date includes month or weekday names, you can use tokens to describe that as well:

- `%b` - abbreviated month name, e.g. Jan, Feb.
- `%B` - full month name, e.g. January, February.
- `%a` - abbreviated weekday, e.g. Mon, Tue.
- `%A` - full weekday, e.g. Monday, Tuesday.

Things become a little more complicated now though, because R will interpret the names as if they were written in the language set in your locale, which contains a number of settings related your language and region. To find out what language is in your locale, you can use:

```
Sys.getlocale("LC_TIME")
```

I’m writing this on a machine with Swedish locale settings (my output from the above code chunk is "sv_SE.UTF-8"). The Swedish word for Wednesday is onsdag, and therefore the following code doesn’t work on my machine:

```
as.Date("Wednesday 1 April 2020", format = "%A %d %B %Y")
```

However, if I translate it to Swedish, it runs just fine:

7The Swedish onsdag and English Wednesday both derive from the proto-Germanic Wodensdag, Odin’s day, in honour of the old Germanic god of that name.
You may at times need to make similar translations of dates. One option is to use `gsub` to translate the names of months and weekdays into the correct language (see Section 5.5.4). Alternatively, you can change the locale settings. On most systems, the following setting will allow you to read English months and days properly:

```r
Sys.setlocale("LC_TIME", "C")
```

The locale settings will revert to the defaults the next time you start R.

Conversely, you may want to extract a substring from a `Date` object, for instance the day of the month. This can be done using `strftime`, using the same tokens as above. Here are some examples, including one with the token `%j`, which can be used to extract the day of the year:

```r
dates <- as.Date(c("2020-04-01", "2021-01-29", "2021-02-22"), format = "%Y-%m-%d")

# Extract the day of the month:
strftime(dates, format = "%d")

# Extract the month:
strftime(dates, format = "%m")

# Extract the year:
strftime(dates, format = "%Y")

# Extract the day of the year:
strftime(dates, format = "%j")
```

Should you need to, you can of course convert these objects from `character` to `numeric` using `as.numeric`.

For a complete list of tokens that can be used to describe date patterns, see `?strftime`.

Exercise 5.11. Consider the following `Date` vector:

```r
dates <- as.Date(c("2015-01-01", "1984-03-12", "2012-09-08"), format = "%Y-%m-%d")
```

1. Apply the functions `weekdays`, `months` and `quarters` to the vector. What do they do?
2. Use the `julian` function to find out how many days passed between 1970-01-01 and the dates in `dates`.

Exercise 5.12. Consider the three character objects created below:

```r
time1 <- "2020-04-01 13:20"
time2 <- "2020-04-01 14:30"
time3 <- "2020-04-03 18:58"
```

1. What happens if you convert the three variables to Date objects using `as.Date` without specifying the date format?
2. Convert `time1` to a Date object and add 1 to it. What is the result?
3. Convert `time3` and `time1` to Date objects and subtract them. What is the result?
4. Convert `time2` and `time1` to Date objects and subtract them. What is the result?
5. What happens if you convert the three variables to POSIXct date and time objects using `as.POSIXct` without specifying the date format?
6. Convert `time3` and `time1` to POSIXct objects and subtract them. What is the result?
7. Convert `time2` and `time1` to POSIXct objects and subtract them. What is the result?
8. Use the `difftime` to repeat the calculation in task 6, but with the result presented in hours.

Exercise 5.13. In some fields, e.g. economics, data is often aggregated on a quarter-year level, as in these examples:

```r
qvec1 <- c("2020 Q4", "2021 Q1", "2021 Q2")
qvec2 <- c("Q4/20", "Q1/21", "Q2/21")
qvec3 <- c("Q4-2020", "Q1-2021", "Q2-2021")
```

To convert `qvec1` to a Date object, we can use `as.yearqtr` from the zoo package in two ways:

```r
library(zoo)
as.Date(as.yearqtr(qvec1, format = "%Y Q%q"))
as.Date(as.yearqtr(qvec1, format = "%Y Q%q"), frac = 1)
```

1. Describe the results. What is the difference? Which do you think is preferable?
2. Convert `qvec2` and `qvec3` to Date objects in the same way. Make sure that you get the `format` argument, which describes the date format, right.
5.6.2 Plotting with dates

`ggplot2` automatically recognises `Date` objects and will usually plot them in a nice way. That only works if it actually has the dates though. Consider the following plot, which we created in Section 4.6.7 - it shows the daily electricity demand in Victoria, Australia in 2014:

```r
library(plotly)
library(fpp2)

## Create the plot object
myPlot <- autoplot(elecdaily[, "Demand"])

## Create the interactive plot
ggplotly(myPlot)
```

When you hover the points, the formatting of the dates looks odd. We’d like to have proper dates instead. In order to do so, we’ll use `seq.Date` to create a sequence of dates, ranging from 2014-01-01 to 2014-12-31:

```r
## Create a data frame with better formatted dates
elecdaily2 <- as.data.frame(elecdaily)
elecdaily2$Date <- seq.Date(as.Date("2014-01-01"),
                        as.Date("2014-12-31"),
                        by = "day")

## Create the plot object
myPlot <- ggplot(elecdaily2, aes(Date, Demand)) +
          geom_line()

## Create the interactive plot
ggplotly(myPlot)
```

`seq.Date` can be used analogously to create sequences where there is a week, month, quarter or year between each element of the sequence, by changing the `by` argument.

~

Exercise 5.14. Return to the plot from Exercise 4.12, which was created using

```r
library(fpp2)
autoplot(elecdaily, facets = TRUE)
```

You’ll notice that the x-axis shows week numbers rather than dates (the dates in the `elecdaily` time series object are formatted as weeks with decimal numbers). Make a time series plot of the `Demand` variable with dates (2014-01-01 to 2014-12-31)
along the x-axis (your solution is likely to rely on standard R techniques rather than autoplot).

Exercise 5.15. Create an interactive version time series plot of the a10 anti-diabetic drug sales data, as in Section 4.6.7. Make sure that the dates are correctly displayed.

5.7 Data manipulation with data.table, dplyr, and tidyr

In the remainder of this chapter, we will use three packages that contain functions for fast and efficient data manipulation: `data.table` and the tidyverse packages `dplyr` and `tidyr`. To begin with, it is therefore a good idea to install them. And while you wait for the installation to finish, read on.

```r
install.packages(c("dplyr", "tidyr", "data.table"))
```

There is almost always more than one way to solve a problem in R. We now know how to access vectors and elements in data frames, e.g. to compute means. We also know how to modify and add variables to data frames. Indeed, you can do just about anything using the functions in base R. Sometimes, however, those solutions become rather cumbersome, as they can require a fair amount of programming and verbose code. `data.table` and the tidyverse packages offer simpler solutions and speed up the workflow for these types of problems. Both can be used for the same tasks. You can learn one of them or both. The syntax used for `data.table` is often more concise and arguably more consistent than that in `dplyr` (it is in essence an extension of the `[i, j]` notation that we have already used for data frames). Second, it is fast and memory-efficient, which makes a huge difference if you are working with big data (you’ll see this for yourself in Section 6.6). On the other hand, many people prefer the syntax in `dplyr` and `tidyr`, which lends itself exceptionally well for usage with pipes. If you work with small or medium-sized datasets, the difference in performance between the two packages is negligible. `dplyr` is also much better suited for working directly with databases, which is a huge selling point if your data already is in a database.

In the sections below, we will see how to perform different operations using both `data.table` and the tidyverse packages. Perhaps you already know which one that you want to use (`data.table` if performance is important to you, `dplyr+tidyr` if you like to use pipes or will be doing a lot of work with databases). If not, you can use these examples to guide your choice. Or not choose at all! I regularly use both packages myself, to harness the strength of both. There is no harm in knowing how to use both a hammer and a screwdriver.

8There is also a package called `dtplyr`, which allows you to use the fast functions from `data.table` with `dplyr` syntax. It is useful if you are working with big data, already know `dplyr` and don’t want to learn `data.table`. If that isn’t an accurate description of you, you can safely ignore `dtplyr` for now.
5.7.1 data.table and tidyverse syntax basics

data.table relies heavily on the \([i, j]\) notation that is used for data frames in R. It also adds a third element: \([i, j, by]\). Using this, R selects the rows indicated by \(i\), the columns indicated by \(j\) and groups them by \(by\). This makes it easy e.g. to compute grouped summaries.

With the tidyverse packages you will instead use new functions with names like filter and summarise to perform operations on your data. These are typically combined using the pipe operator, \(\%>%\), which makes the code flow nicely from left to right.

It’s almost time to look at some examples of what this actually looks like in practice. First though, now that you’ve installed data.table and dplyr, it’s time to load them (we’ll get to tidyr a little later). We’ll also create a data.table version of the airquality data, which we’ll use in the examples below. This is required in order to use data.table syntax, as it only works on data.table objects. Luckily, dplyr works perfectly when used on data.table objects, so we can use the same object for the examples for both packages.

```r
library(data.table)
library(dplyr)
aq <- as.data.table(airquality)
```

When importing data from csv files, you can import them as data.table objects instead of data.frame objects by replacing read.csv with fread from the data.table package. The latter function also has the benefit of being substantially faster when importing large (several MB’s) csv files.

Note that, similar to what we saw in Section 5.2.1, variables in imported data frames can have names that would not be allowed in base R, for instance including forbidden characters like -. data.table and dplyr allow you to work with such variables by wrapping their names in apostrophes: referring to the illegally named variable as illegal-character-name won’t work, but `illegal-character-name` will.

5.7.2 Modifying a variable

As a first example, let’s consider how to use data.table and dplyr to modify a variable in a data frame. The wind speed in airquality is measured in miles per hour. We can convert that to metres per second by multiplying the speed by 0.44704. Using only base R, we’d do this using airquality\$Wind <- airquality\$Wind * 0.44704. With data.table we can instead do this using \([i, j]\) notation, and with dplyr we can do it by using a function called mutate (because it “mutates” your data).

Change wind speed to m/s instead of mph:
5.7. DATA MANIPULATION WITH DATA.TABLE, DPLYR, AND TIDYR

With data.table:

```r
aq[, Wind := Wind * 0.44704]
```

With dplyr:

```r
aq %>% mutate(Wind = Wind * 0.44704) -> aq
```

Note that when using data.table, there is not an explicit assignment. We don’t use <- to assign the new data frame to aq - instead the assignment happens automatically. This means that you have to be a little bit careful, so that you don’t inadvertently make changes to your data when playing around with it.

In this case, using data.table or dplyr doesn’t make anything easier. Where these packages really shine is when we attempt more complicated operations. Before that though, let’s look at a few more simple examples.

5.7.3 Computing a new variable based on existing variables

What if we wish to create new variables based on other variables in the data frame? For instance, maybe we want to create a dummy variable called Hot, containing a logical that describes whether a day was hot (temperature above 90 - TRUE) or not (FALSE). That is, we wish to check the condition Temp > 90 for each row, and put the resulting logical in the new variable Hot.

Add a dummy variable describing whether it is hotter than 90:

With data.table:

```r
aq[, Hot := Temp > 90]
```

With dplyr:

```r
aq %>% mutate(Hot = Temp > 90) -> aq
```

5.7.4 Renaming a variable

To change the name of a variable, we can use setnames from data.table or rename from dplyr. Let’s change the name of the variable Hot that we created in the previous section, to HotDay:

With data.table:

```r
setnames(aq, "Hot", "HotDay")
```

With dplyr:

```r
aq %>% rename(HotDay = Hot) -> aq
```

5.7.5 Removing a variable

Maybe adding Hot to the data frame wasn’t such a great idea after all. How can we remove it?

Removing Hot:
With `data.table`:

```r
aq[, Hot := NULL]
```

With `dplyr`:

```r
aq %>% select(-Hot) -> aq
```

If we wish to remove multiple columns at once, the syntax is similar:

Removing multiple columns:

With `data.table`:

```r
aq[, c("Month", "Day") := NULL]
```

With `dplyr`:

```r
aq %>% select(-Month, -Day) -> aq
```

Exercise 5.16. Load the VAS pain data `vas.csv` from Exercise 3.8. Then do the following:

1. Remove the columns X and X.1.
2. Add a dummy variable called `highVAS` that indicates whether a patient’s VAS is 7 or greater on any given day.

5.7.6 Recoding factor levels

Changing the names of factor levels in base R typically relies on using indices of level names, as in Section 5.4.2. This can be avoided using `data.table` or the `recode` function in `dplyr`. We return to the `smoke` example from Section 5.4 and put it in a `data.table`:

```r
library(data.table)
library(dplyr)

smoke <- c("Never", "Never", "Heavy", "Never", "Occasionally", "Never", "Never", "Regularly", "Regularly", "No")

smoke2 <- factor(smoke, levels = c("Never", "Occasionally", "Regularly", "Heavy"), ordered = TRUE)

smoke3 <- data.table(smoke2)
```

Suppose that we want to change the levels’ names to abbreviated versions: *Nvr, Occ, Reg* and *Hvy*. Here’s how to do this:
With `data.table`:

```r
new_names = c("Nvr", "Occ", "Reg", "Hvy")
smoke3[.(smoke2 = levels(smoke2), to = new_names),
on = "smoke2",
smoke2 := i.to]
smoke3[, smoke2 := droplevels(smoke2)]
```

With `dplyr`:

```r
smoke3 %>% mutate(smoke2 = recode(smoke2,
    "Never" = "Nvr",
    "Occasionally" = "Occ",
    "Regularly" = "Reg",
    "Heavy" = "Hvy"))
```

Next, we can combine the `Occ`, `Reg` and `Hvy` levels into a single level, called `Yes`:

With `data.table`:

```r
smoke3[.(smoke2 = c("Occ", "Reg", "Hvy"), to = "Yes"),
on = "smoke2",
smoke2 := i.to]
```

With `dplyr`:

```r
smoke3 %>% mutate(smoke2 = recode(smoke2,
    "Occ" = "Yes",
    "Reg" = "Yes",
    "Hvy" = "Yes"))
```

Exercise 5.17. In Exercise 3.7 you learned how to create a `factor` variable from a numeric variable using `cut`. Return to your solution (or the solution at the back of the book) and do the following using `data.table` and/or `dplyr`:

1. Change the category names to `Mild`, `Moderate` and `Hot`.

2. Combine `Moderate` and `Hot` into a single level named `Hot`.

5.7.7 Grouped summaries

We’ve already seen how we can use `aggregate` and `by` to create grouped summaries. However, in many cases it is as easy or easier to use `data.table` or `dplyr` for such summaries.
CHAPTER 5. DEALING WITH MESSY DATA

To begin with, let’s load the packages again (in case you don’t already have them loaded), and let’s recreate the `aq data.table`, which we made a bit of a mess of by removing some important columns in the previous section:

```r
library(data.table)
library(dplyr)

aq <- data.table(airquality)
```

Now, let’s compute the mean temperature for each month. Both `data.table` and `dplyr` will return a data frame with the results. In the `data.table` approach, assigning a name to the summary statistic (`mean`, in this case) is optional, but not in `dplyr`.

With `data.table`:

```r
aq[, mean(Temp), Month]
# or, to assign a name:
aq[, .(meanTemp = mean(Temp)), Month]
```

With `dplyr`:

```r
aq %>% group_by(Month) %>%
  summarise(meanTemp = mean(Temp))
```

You’ll recall that if we apply `mean` to a vector containing `NA` values, it will return `NA`:

With `data.table`:

```r
aq[, mean(Ozone), Month]
```

With `dplyr`:

```r
aq %>% group_by(Month) %>%
  summarise(meanTemp = mean(Ozone))
```

In order to avoid this, we can pass the argument `na.rm = TRUE` to `mean`, just as we would in other contexts. To compute the mean ozone concentration for each month, ignoring `NA` values:

With `data.table`:

```r
aq[, mean(Ozone, na.rm = TRUE), Month]
```

With `dplyr`:

```r
aq %>% group_by(Month) %>%
  summarise(meanTemp = mean(Ozone, na.rm = TRUE))
```

What if we want to compute a grouped summary statistic involving two variables? For instance, the correlation between temperature and wind speed for each month?
With data.table:

```
aq[, cor(Temp, Wind), Month]
```

With dplyr:

```
aq %>% group_by(Month) %>%
  summarise(cor =
    cor(Temp, Wind))
```

The syntax for computing multiple grouped statistics is similar. We compute both the mean temperature and the correlation for each month:

With data.table:

```
aq[, .(meanTemp = mean(Temp),
    cor = cor(Temp, Wind)),
    Month]
```

With dplyr:

```
aq %>% group_by(Month) %>%
  summarise(meanTemp =
    mean(Temp),
    cor =
    cor(Temp, Wind))
```

At times, you’ll want to compute summaries for all variables that share some property. As an example, you may want to compute the mean of all numeric variables in your data frame. In dplyr there is a convenience function called `across` that can be used for this: `summarise(across(where(is.numeric), mean))` will compute the mean of all numeric variables. In data.table, we can instead utilise the `apply` family of functions from base R, that we’ll study in Section 6.5. To compute the mean of all numeric variables:

With data.table:

```
aq[, lapply(.SD, mean),
    Month, .SDcols = names(aq)[
    sapply(aq, is.numeric)]
```

With dplyr:

```
aq %>% group_by(Month) %>%
  summarise(across(
    where(is.numeric),
    mean, na.rm = TRUE))
```

Both packages have special functions for counting the number of observations in groups: `.N` for data.table and `n` for dplyr. For instance, we can count the number of days in each month:

With data.table:

```
aq[, .N, Month]
```

With dplyr:

```
aq %>% group_by(Month) %>%
  summarise(days = n())
```

Similarly, you can count the number of unique values of variables using `uniqueN` for data.table and `n_distinct` for dplyr:
With `data.table`:

```r
aq[, uniqueN(Month)]
```

With `dplyr`:

```r
aq %>% summarise(months = n_distinct(Month))
```

Exercise 5.18. Load the VAS pain data `vas.csv` from Exercise 3.8. Then do the following using `data.table` and/or `dplyr`:

1. Compute the mean VAS for each patient.
2. Compute the lowest and highest VAS recorded for each patient.
3. Compute the number of high-VAS days, defined as days with where the VAS was at least 7, for each patient.

Exercise 5.19. We return to the `datasauRus` package and the `datasaurus_dozen` dataset from Exercise 3.13. Check its structure and then do the following using `data.table` and/or `dplyr`:

1. Compute the mean of `x`, mean of `y`, standard deviation of `x`, standard deviation of `y`, and correlation between `x` and `y`, grouped by `dataset`. Are there any differences between the 12 datasets?
2. Make a scatterplot of `x` against `y` for each dataset. Are there any differences between the 12 datasets?

5.7.8 Filling in missing values

In some cases, you may want to fill missing values of a variable with the previous non-missing entry. To see an example of this, let’s create a version of `aq` where the value of `Month` are missing for some days:

```r
aq$Month[c(2:3, 36:39, 70)] <- NA

# Some values of Month are now missing:
head(aq)
```

To fill the missing values with the last non-missing entry, we can now use `nafill` or `fill` as follows:

With `data.table`:

```r
aq[, Month := nafill(Month, "locf")]
```

With `tidyr`:

```r
aq %>% fill(Month) -> aq
```
5.8. **FILTERING: SELECT ROWS**

To instead fill the missing values with the *next* non-missing entry:

With `data.table`:

```r
aq[, Month := nafill(Month, "nocb")]
```

With `tidyr`:

```r
aq %>% fill(Month, .direction = "up") -> aq
```

~

Exercise 5.20. Load the VAS pain data `vas.csv` from Exercise 3.8. Fill the missing values in the `Visit` column with the last non-missing value.

5.7.9 **Chaining commands together**

When working with tidyverse packages, commands are usually chained together using `%>%` pipes. When using `data.table`, commands are chained by repeated use of `[]` brackets on the same line. This is probably best illustrated using an example. Assume again that there are missing values in `Month` in `aq`:

```r
aq$Month[c(2:3, 36:39, 70)] <- NA
```

To fill in the missing values with the last non-missing entry (Section 5.7.8) and then count the number of days in each month (Section 5.7.7), we can do as follows.

With `data.table`:

```r
aq[, Month := nafill(Month, "locf")][, .N, Month]
```

With `tidyr` and `dplyr`:

```r
aq %>% fill(Month) %>%
  group_by(Month) %>%
  summarise(days = n())
```

5.8 **Filtering: select rows**

You’ll frequently want to filter away some rows from your data. Perhaps you only want to select rows where a variable exceeds some value, or want to exclude rows with NA values. This can be done in several different ways: using row numbers, using conditions, at random, or using regular expressions. Let’s have a look at them, one by one. We’ll use `aq`, the `data.table` version of `airquality` that we created before, for the examples.
library(data.table)
library(dplyr)
aq <- data.table(airquality)

5.8.1 Filtering using row numbers

If you know the row numbers of the rows that you wish to remove (perhaps you’ve found them using `which`, as in Section 3.2.3?), you can use those numbers for filtering. Here are four examples.

To select the third row:

With `data.table`:

```
aq[3,]
```

With `dplyr`:

```
aq %>% slice(3)
```

To select rows 3 to 5:

With `data.table`:

```
aq[3:5,]
```

With `dplyr`:

```
aq %>% slice(3:5)
```

To select rows 3, 7 and 15:

With `data.table`:

```
aq[c(3, 7, 15),]
```

With `dplyr`:

```
aq %>% slice(c(3, 7, 15))
```

To select all rows except rows 3, 7 and 15:

With `data.table`:

```
aq[-c(3, 7, 15),]
```

With `dplyr`:

```
aq %>% slice(-c(3, 7, 15))
```

5.8.2 Filtering using conditions

Filtering is often done using conditions, e.g. to select observations with certain properties. Here are some examples:

To select rows where `Temp` is greater than 90:
5.8. FILTERING: SELECT ROWS

With data.table:

\[
aq[Temp > 90,]
\]

With dplyr:

\[
aq %>% filter(Temp > 90)
\]

To select rows where Month is 6 (June):

With data.table:

\[
aq[Month == 6,]
\]

With dplyr:

\[
aq %>% filter(Month == 6)
\]

To select rows where Temp is greater than 90 and Month is 6 (June):

With data.table:

\[
aq[Temp > 90 & Month == 6,]
\]

With dplyr:

\[
aq %>% filter(Temp > 90, Month == 6)
\]

To select rows where Temp is between 80 and 90 (including 80 and 90):

With data.table:

\[
aq[Temp %between% c(80, 90),]
\]

With dplyr:

\[
aq %>% filter(between(Temp, 80, 90))
\]

To select the 5 rows with the highest Temp:

With data.table:

\[
aq[frankv(-Temp,
ties.method = "min") <= 5,]
\]

With dplyr:

\[
aq %>% top_n(5, Temp)
\]

In this case, the above code returns more than 5 rows because of ties.

To remove duplicate rows:

With data.table:

\[
unique(aq)
\]

With dplyr:

\[
aq %>% distinct
\]

To remove rows with missing data (NA values) in at least one variable:
With data.table:
na.omit(aq)

With tidyr:
library(tidyr)
aq %>% drop_na

To remove rows with missing Ozone values:

With data.table:
na.omit(aq, "Ozone")

With tidyr:
library(tidyr)
aq %>% drop_na("Ozone")

At times, you want to filter your data based on whether the observations are connected to observations in a different dataset. Such filters are known as semijoins and antijoins, and are discussed in Section 5.12.4.

5.8.3 Selecting rows at random

In some situations, for instance when training and evaluating machine learning models, you may wish to draw a random sample from your data. This is done using the sample (data.table) and sample_n (dplyr) functions.

To select 5 rows at random:

With data.table:
aq[sample(.N, 5),]

With dplyr:
aq %>% sample_n(5)

If you run the code multiple times, you will get different results each time. See Section 7.1 for more on random sampling and how it can be used.

5.8.4 Using regular expressions to select rows

In some cases, particularly when working with text data, you’ll want to filter using regular expressions (see Section 5.5.3). data.table has a convenience function called %like% that can be used to call grepl in an alternative (less opaque?) way. With dplyr we use grepl in the usual fashion. To have some text data to try this out on, we’ll use this data frame, which contains descriptions of some dogs:

dogs <- data.table(Name = c("Bianca", "Bella", "Mimmi", "Daisy", "Ernst", "Smulan"),
 Breed = c("Greyhound", "Greyhound", "Pug", "Poodle", "Bedlington Terrier", "Boxer"),
 Desc = c("Fast, playful", "Fast, easily worried", ...)
"Intense, small, loud",
"Majestic, protective, playful",
"Playful, relaxed",
"Loving, cuddly, playful")

View(dogs)

To select all rows with names beginning with B:

With `data.table`:

```r
dogs[Name %like% "^B",]
# or:
dogs[grepl("^B", Name),]
```

With `dplyr`:

```r
dogs %>% filter(grepl("B[a-z]", Name))
```

To select all rows where `Desc` includes the word `playful`:

With `data.table`:

```r
dogs[Desc %like% "[pP]layful",]
```

With `dplyr`:

```r
dogs %>% filter(grepl("[pP]layful", Desc))
```

Exercise 5.21. Download the `ucdp-onesided-191.csv` data file from the book’s web page. It contains data about international attacks on civilians by governments and formally organised armed groups during the period 1989-2018, collected as part of the Uppsala Conflict Data Program (Eck & Hultman, 2007; Petterson et al., 2019). Among other things, it contains information about the actor (attacker), the fatality rate, and attack location. Load the data and check its structure.

1. Filter the rows so that only conflicts that took place in Colombia are retained. How many different actors were responsible for attacks in Colombia during the period?
2. Using the `best_fatality_estimate` column to estimate fatalities, calculate the number of worldwide fatalities caused by government attacks on civilians during 1989-2018.

Exercise 5.22. Load the `oslo-biomarkers.xlsx` data from Exercise 5.8. Use `data.table` and/or `dplyr` to do the following:

1. Select only the measurements from blood samples taken at 12 months.
2. Select only the measurements from the patient with ID number 6.
5.9 Subsetting: select columns

Another common situation is that you want to remove some variables from your data. Perhaps the variables aren’t of interest in a particular analysis that you’re going to perform, or perhaps you’ve simply imported more variables than you need. As with rows, this can be done using numbers, names or regular expressions. Let’s look at some examples using the aq data:

```r
library(data.table)
library(dplyr)
aq <- data.table(airquality)
```

5.9.1 Selecting a single column

When selecting a single column from a data frame, you sometimes want to extract the column as a vector and sometimes as a single-column data frame (for instance if you are going to pass it to a function that takes a data frame as input). You should be a little bit careful when doing this, to make sure that you get the column in the correct format:

With `data.table`:

```r
# Return a vector:
aq$Temp
# or
aq[, Temp]

# Return a data.table:
aq[, "Temp"]
```

With `dplyr`:

```r
# Return a vector:
aq$Temp
# or
aq %>% pull(Temp)

# Return a tibble:
aq %>% select(Temp)
```

5.9.2 Selecting multiple columns

Selecting multiple columns is more straightforward, as the object that is returned always will be a data frame. Here are some examples.

To select `Temp`, `Month` and `Day`:

With `data.table`:

```r
aq[, .(Temp, Month, Day)]
```

With `dplyr`:

```r
aq %>% select(Temp, Month, Day)
```

To select all columns between `Wind` and `Month`:

```r
```
5.9. SUBSETTING: SELECT COLUMNS

With data.table:

\[
\texttt{aq[, Wind:Month]}
\]

With dplyr:

\[
\texttt{aq \%>\% select(Wind:Month)}
\]

To select all columns except Month and Day:

With data.table:

\[
\texttt{aq[, -c("Month", "Day")]} \]

With dplyr:

\[
\texttt{aq \%>\% select(-Month, -Day)}
\]

To select all numeric variables (which for the aq data is all variables!):

With data.table:

\[
\texttt{aq[, sapply(msleep, class) == "numeric"]}
\]

With dplyr:

\[
\texttt{aq \%>\% select_if(is.numeric)}
\]

To remove columns with missing (NA) values:

With data.table:

\[
\texttt{aq[, .SD, .SDcols = colSums(is.na(aq)) == 0]}
\]

With dplyr:

\[
\texttt{aq \%>\% select_if(-all(!is.na(.)))}
\]

5.9.3 Using regular expressions to select columns

In data.table, using regular expressions to select columns is done using \texttt{grep}. dplyr differs in that it has several convenience functions for selecting columns, like \texttt{starts_with}, \texttt{ends_with}, \texttt{contains}. As an example, we can select variables the name of which contains the letter \texttt{n}:

With data.table:

\[
\texttt{vars <- grepl("n", names(aq))}
\texttt{aq[, ..vars]}
\]

With dplyr:

\[
\texttt{# contains is a convenience}
\texttt{# function for checking if a name}
\texttt{# contains a string:}
\texttt{aq \%>\% select(contains("n"))}
\texttt{# matches can be used with any}
\texttt{# regular expression:}
\texttt{aq \%>\% select(matches("n"))}
\]
5.9.4 Subsetting using column numbers

It is also possible to subset using column numbers, but you need to be careful if you want to use that approach. Column numbers can change, for instance if a variable is removed from the data frame. More importantly, however, using column numbers can yield different results depending on what type of data table you’re using. Let’s have a look at what happens if we use this approach with different types of data tables:

```r
# data.frame:
aq <- as.data.frame(airquality)
str(aq[, 2])

# data.table:
aq <- as.data.table(airquality)
str(aq[, 2])

# tibble:
aq <- as_tibble(airquality)
str(aq[, 2])
```

As you can see, `aq[, 2]` returns a vector, a data table or a tibble, depending on what type of object `aq` is. Unfortunately, this approach is used by several R packages, and can cause problems, because it may return the wrong type of object.

A better approach is to use `aq[[2]]`, which works the same for data frames, data tables and tibbles, returning a vector:

```r
# data.frame:
aq <- as.data.frame(airquality)
str(aq[[2]])

# data.table:
aq <- as.data.table(airquality)
str(aq[[2]])

# tibble:
aq <- as_tibble(airquality)
str(aq[[2]])
```

Exercise 5.23. Return to the `ucdp-onesided-191.csv` data from Exercise 5.21. To have a cleaner and less bloated dataset to work with, it can make sense to remove some columns. Select only the `actor_name`, `year`, `best_fatality_estimate` and `location` columns.
5.10 Sorting

Sometimes you don’t want to filter rows, but rearrange their order according to their values for some variable. Similarly, you may want to change the order of the columns in your data. I often do this after merging data from different tables (as we’ll do in Section 5.12). This is often useful for presentation purposes, but can at times also aid in analyses.

5.10.1 Changing the column order

It is straightforward to change column positions using `setcolorder` in `data.table` and `relocate` in `dplyr`.

To put `Month` and `Day` in the first two columns, without rearranging the other columns:

With `data.table`:

```r
setcolorder(aq, c("Month", "Day"))
```

With `dplyr`:

```r
aq %>% relocate("Month", "Day")
```

5.10.2 Changing the row order

In `data.table`, `order` is used for sorting rows, and in `dplyr`, `arrange` is used (sometimes in combination with `desc`). The syntax differs depending on whether you wish to sort your rows in ascending or descending order. We will illustrate this using the `airquality` data.

```r
library(data.table)
library(dplyr)

aq <- data.table(airquality)
```

First of all, if you’re just looking to sort a single vector, rather than an entire data frame, the quickest way to do so is to use `sort`:

```r
sort(aq$Wind)
sort(aq$Wind, decreasing = TRUE)
sort(c("C", "B", "A", "D"))
```

If you’re looking to sort an entire data frame by one or more variables, you need to move beyond `sort`. To sort rows by `Wind` (`ascending` order):

With `data.table`:

```r
aq[order(Wind),]
```

With `dplyr`:

```r
aq %>% arrange(Wind)
```
To sort rows by Wind (descending order):

With data.table:

```
aq[order(-Wind),]
```

With dplyr:

```
aq %>% arrange(-Wind)
# or
aq %>% arrange(desc(Wind))
```

To sort rows, first by Temp (ascending order) and then by Wind (descending order):

With data.table:

```
aq[order(Temp, -Wind),]
```

With dplyr:

```
aq %>% arrange(Temp, desc(Wind))
```

Exercise 5.24. Load the `oslo-biomarkers.xlsx` data from Exercise 5.8. Note that it is not ordered in a natural way. Reorder it by patient ID instead.

5.11 Reshaping data

The `gapminder` dataset from the `gapminder` package contains information about life expectancy, population size and GDP per capita for 142 countries for 12 years from the period 1952-2007. To begin with, let’s have a look at the data:

```r
library(gapminder)
?gapminder
View(gapminder)
```

Each row contains data for one country and one year, meaning that the data for each country is spread over 12 rows. This is known as long data or long format. As another option, we could store it in wide format, where the data is formatted so that all observations corresponding to a country are stored on the same row:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>Asia</td>
<td>28.8</td>
<td>30.2</td>
<td>32.0</td>
</tr>
<tr>
<td>Albania</td>
<td>Europe</td>
<td>55.2</td>
<td>59.3</td>
<td>64.8</td>
</tr>
</tbody>
</table>

Sometimes it makes sense to spread an observation over multiple rows (long format), and sometimes it makes more sense to spread a variable across multiple columns (wide format). Some analyses require long data, whereas others require wide data.

9You may need to install the package first, using `install.packages("gapminder")`.
And if you’re unlucky, data will arrive in the wrong format for the analysis you need to do. In this section, you’ll learn how to transform your data from long to wide, and back again.

5.11.1 From long to wide

When going from a long format to a wide format, you choose columns to group the observations by (in the *gapminder* case: country and maybe also continent), columns to take values names from (lifeExp, pop and gdpPercap), and columns to create variable names from (year).

In *data.table*, the transformation from long to wide is done using the `dcast` function. *dplyr* does not contain functions for such transformations, but its sibling, the tidyverse package *tidyr*, does.

The *tidyr* function used for long-to-wide formatting is `pivot_wider`. First, we convert the *gapminder* data frame to a *data.table* object:

```r
library(data.table)
library(tidyr)

gm <- as.data.table(gapminder)
```

To transform the *gm* data from long to wide and store it as *gmw*:

With *data.table*:

```r
gmw <- dcast(gm, country + continent ~ year,
             value.var = c("pop", "lifeExp", "gdpPercap"))
```

With *tidyr*:

```r
gm %>% pivot_wider(id_cols = c(country, continent),
                   names_from = year,
                   values_from =
                   c(pop, lifeExp, gdpPercap)) -> gmw
```

5.11.2 From wide to long

We’ve now seen how to transform the long format *gapminder* data to the wide format *gmw* data. But what if we want to go from wide format to long? Let’s see if we can transform *gmw* back to the long format.

In *data.table*, wide-to-long formatting is done using `melt`, and in *dplyr* it is done using `pivot_longer`.

To transform the *gmw* data from long to wide:

With *data.table*:

```r
gmw <- dcast(gm, id_cols = c(country, continent),
             value.var = c("pop", "lifeExp", "gdpPercap"),
             year)
```

With *tidyr*:

```r
gmw %>% pivot_longer(id_cols = c(country, continent),
                      names_to = "year",
                      values_to = c(pop, lifeExp, gdpPercap)) -> gm
```
gm <- melt(gmw, id.vars = c("country", "continent"),
 measure.vars = 2:37)

With tidyr:

```r
gmw %>% pivot_longer(names(gmw)[2:37],
                     names_to = "variable",
                     values_to = "value") -> gm
```

The resulting data frames are perhaps too long, with each variable (pop, lifeExp and gdpPerCapita) being put on a different row. To make it look like the original dataset, we must first split the variable variable (into a column with variable names and column with years) and then make the data frame a little wider again. That is the topic of the next section.

5.11.3 Splitting columns

In the too long gm data that you created at the end of the last section, the observations in the variable column look like pop_1952 and gdpPerCap_2007, i.e. are of the form variableName_year. We'd like to split them into two columns: one with variable names and one with years. `dplyr` has a function called `tstrsplit` for this purpose, and `tidyr` has `separate`.

To split the variable column at the underscore _, and then reformat gm to look like the original gapminder data:

With data.table:

```r
gm[, c("variable", "year") := tstrsplit(variable,
           "_", fixed = TRUE)]

gm <- dcast(gm, country + year ~ variable,
            value.var = c("value"))
```

With tidyr:

```r
gm %>% separate(variable,
                 into = c("variable", "year"),
                 sep = "_") %>%
pivot_wider(id_cols = c(country, continent, year),
            names_from = variable,
            values_from = value) -> gm
```

5.11.4 Merging columns

Similarly, you may at times want to merge two columns, for instance if one contains the day+month part of a date and the other contains the year. An example of such a situation can be found in the `airquality` dataset, where we may want to merge the
Day and Month columns into a new Date column. Let’s re-create the \texttt{aq data.table} object one last time:

```r
library(data.table)
library(tidyrr)

aq <- as.data.table(airquality)
```

If we wanted to create a Date column containing the year (1973), month and day for each observation, we could use \texttt{paste} and \texttt{as.Date}:

```r
as.Date(paste(1973, aq$Month, aq$Day, sep = "-"))
```

The natural \texttt{data.table} approach is just this, whereas \texttt{tidyr} offers a function called \texttt{unite} to merge columns, which can be combined with \texttt{mutate} to paste the year to the date. To merge the Month and Day columns with a year and convert it to a Date object:

With \texttt{data.table}:

```r
aq[, Date := as.Date(paste(1973, aq$Month, aq$Day, sep = "-"))]
```

With \texttt{tidyr} and \texttt{dplyr}:

```r
aq %>% unite("Date", Month, Day, sep = "-") %>%
mutate(Date = as.Date(paste(1973, Date, sep = "-")))
```

\textbf{Exercise 5.25.} Load the \texttt{oslo-biomarkers.xlsx} data from Exercise 5.8. Then do the following using \texttt{data.table} and/or \texttt{dplyr/tidyrr}:

1. Split the \texttt{PatientID.timepoint} column in two parts: one with the patient ID and one with the timepoint.
2. Sort the table by patient ID, in numeric order.
3. Reformat the data from long to wide, keeping only the IL-8 and VEGF-A measurements.

Save the resulting data frame - you will need it again in Exercise 5.26!

5.12 Merging data from multiple tables

It is common that data is spread over multiple tables: different sheets in Excel files, different \texttt{.csv} files, or different tables in databases. Consequently, it is important to
be able to merge data from different tables.

As a first example, let’s study the sales datasets available from the books web page: \texttt{sales-rev.csv} and \texttt{sales-weather.csv}. The first dataset describes the daily revenue for a business in the first quarter of 2020, and the second describes the weather in the region (somewhere in Sweden) during the same period10. Store their respective paths as \texttt{file_path1} and \texttt{file_path2} and then load them:

\begin{verbatim}
rev_data <- read.csv(file_path1, sep = ";")
weather_data <- read.csv(file_path2, sep = ";")
\end{verbatim}

\begin{verbatim}
str(rev_data)
View(rev_data)
str(weather_data)
View(weather_data)
\end{verbatim}

5.12.1 Binds

The simplest types of merges are \textit{binds}, which can be used when you have two tables where either the rows or the columns \textit{match each other exactly}. To illustrate what this may look like, we will use \texttt{data.table/dplyr} to create subsets of the business revenue data. First, we format the tables as \texttt{data.table} objects and the \texttt{DATE} columns as \texttt{Date} objects:

\begin{verbatim}
library(data.table)
library(dplyr)

rev_data <- as.data.table(rev_data)
rev_data$DATE <- as.Date(rev_data$DATE)

weather_data <- as.data.table(weather_data)
weather_data$DATE <- as.Date(weather_data$DATE)
\end{verbatim}

Next, we wish to subtract three subsets: the revenue in January (\texttt{rev_jan}), the revenue in February (\texttt{rev_feb}) and the weather in January (\texttt{weather_jan}).

With \texttt{data.table}:

\begin{verbatim}
rev_jan <- rev_data[DATE %between% c("2020-01-01", "2020-01-31"),]
rev_feb <- rev_data[DATE %between% c("2020-02-01", "2020-02-29"),]
weather_jan <- weather_data[DATE %between% c("2020-01-01", "2020-01-31"),]
\end{verbatim}

10I’ve intentionally left out the details regarding the business - these are real sales data from a client, which can be sensitive information.
With dplyr:

```r
rev_data %>% filter(between(DATE,
                           as.Date("2020-01-01"),
                           as.Date("2020-12-31")))
```
A quick look at the structure of the data reveals some similarities:

```r
str(rev_jan)
str(rev_feb)
str(weather_jan)
```

The rows in `rev_jan` correspond one-to-one to the rows in `weather_jan`, with both tables being sorted in exactly the same way. We could therefore bind their columns, i.e. add the columns of `weather_jan` to `rev_jan`.

`rev_jan` and `rev_feb` contain the same columns. We could therefore bind their rows, i.e. add the rows of `rev_feb` to `rev_jan`. To perform these operations, we can use either base R or `dplyr`:

```r
# Join columns of datasets that have the same rows:
cbind(rev_jan, weather_jan)
# Join rows of datasets that have the same columns:
rbind(rev_jan, rev_feb)
```

5.12.2 Merging tables using keys

A closer look at the business revenue data reveals that `rev_data` contains observations from 90 days whereas `weather_data` only contains data for 87 days; revenue data for 2020-03-01 is missing, and weather data for 2020-02-05, 2020-02-06, 2020-03-10, and 2020-03-29 are missing.

Suppose that we want to study how weather affects the revenue of the business. In order to do so, we must merge the two tables. We cannot use a simple column bind,
because the two tables have different numbers of rows. If we attempt a bind, R will produce a merged table by recycling the first few rows from `rev_data` - note that the two `DATE` columns aren’t properly aligned:

```r
tail(cbind(rev_data, weather_data))
```

Clearly, this is not the desired output! We need a way to connect the rows in `rev_data` with the right rows in `weather_data`. Put differently, we need something that allows us to connect the observations in one table to those in another. Variables used to connect tables are known as *keys*, and must in some way uniquely identify observations. In this case the `DATE` column gives us the key - each observation is uniquely determined by it’s `DATE`. So to combine the two tables, we can combine rows from `rev_data` with the rows from `weather_data` that have the same `DATE` values. In the following sections, we’ll look at different ways of merging tables using `data.table` and `dplyr`.

But first, a word of warning: finding the right keys for merging tables is not always straightforward. For a more complex example, consider the `nycflights13` package, which contains five separate but connected datasets:

```r
library(nycflights13)
?airlines  # Names and carrier codes of airlines.
?airports  # Information about airports.
?flights   # Departure and arrival times and delay information for
           # flights.
?planes    # Information about planes.
?weather   # Hourly meteorological data for airports.
```

Perhaps you want to include weather information with the flight data, to study how weather affects delays. Or perhaps you wish to include information about the longitude and latitude of airports (from `airports`) in the `weather` dataset. In `airports`, each observation can be uniquely identified in three different ways: either by its airport code `faa`, its name `name` or its latitude and longitude, `lat` and `lon`:

```r
?airports
head(airports)
```

If we want to use either of these options as a key when merging with `airports` data with another table, that table should also contain the same key.

The `weather` data requires no less than four variables to identify each observation: `origin`, `month`, `day` and `hour`:

```r
?weather
head(weather)
```

It is not perfectly clear from the documentation, but the `origin` variable is actually the FAA airport code of the airport corresponding to the weather measurements. If
we wish to add longitude and latitude to the weather data, we could therefore use **faa** from **airports** as a key.

5.12.3 Inner and outer joins

An operation that combines columns from two tables is called a *join*. There are two main types of joins: *inner joins* and *outer joins*.

- **Inner joins**: create a table containing all observations for which the key appeared in both tables. So if we perform an inner join on the **rev_data** and **weather_data** tables using **DATE** as the key, it won’t contain data for the days that are missing from either the revenue table or the weather table.

In contrast, outer joins create a table retaining rows, even if there is no match in the other table. There are three types of outer joins:

- **Left join**: retains all rows from the first table. In the revenue example, this means all dates present in **rev_data**.
- **Right join**: retains all rows from the second table. In the revenue example, this means all dates present in **weather_data**.
- **Full join**: retains all rows present in at least one of the tables. In the revenue example, this means all dates present in at least one of **rev_data** and **weather_data**.

We will use the **rev_data** and **weather_data** datasets to exemplify the different types of joins. To begin with, we convert them to **data.table** objects (which is optional if you wish to use **dplyr**):

```r
library(data.table)
library(dplyr)

rev_data <- as.data.table(rev_data)
weather_data <- as.data.table(weather_data)
```

Remember that revenue data for 2020-03-01 is missing, and weather data for 2020-02-05, 2020-02-06, 2020-03-10, and 2020-03-29 are missing. This means that out of the 91 days in the period, only 86 have complete data. If we perform an inner join, the resulting table should therefore have 86 rows.

To perform and inner join of **rev_data** and **weather_data** using **DATE** as key:

With data.table:

```r
merge(rev_data, weather_data, by = "DATE")
```

Or:

```r
setkey(rev_data, DATE)
rev_data[weather_data, nomatch = 0]
```

With dplyr:

```r
rev_data %>% inner_join(weather_data, by = "DATE")
```
A left join will retain the 90 dates present in `rev_data`. To perform a(n outer) left join of `rev_data` and `weather_data` using `DATE` as key:

With **data.table**:

```r
merge(rev_data, weather_data,
      all.x = TRUE, by = "DATE")
```

Or:

```r
setkey(weather_data, DATE)
weather_data[rev_data]
```

With **dplyr**:

```r
rev_data %>% left_join(
    weather_data,
    by = "DATE")
```

A right join will retain the 87 dates present in `weather_data`. To perform a(n outer) right join of `rev_data` and `weather_data` using `DATE` as key:

With **data.table**:

```r
merge(rev_data, weather_data,
      all.y = TRUE, by = "DATE")
```

Or:

```r
setkey(rev_data, DATE)
rev_data[weather_data]
```

With **dplyr**:

```r
rev_data %>% right_join(
    weather_data,
    by = "DATE")
```

A full join will retain the 91 dates present in at least one of `rev_data` and `weather_data`. To perform a(n outer) full join of `rev_data` and `weather_data` using `DATE` as key:

With **data.table**:

```r
merge(rev_data, weather_data,
      all = TRUE, by = "DATE")
```

With **dplyr**:

```r
rev_data %>% full_join(
    weather_data,
    by = "DATE")
```

5.12.4 Semijoins and antijoins

Semijoins and antijoins are similar to joins, but work on observations rather than variables. That is, they are used for filtering one table using data from another table:

- **Semijoin**: retains all observations in the first table that have a match in the second table.
- **Antijoin**: retains all observations in the first table that do not have a match in the second table.
The same thing can be achieved using the filtering techniques of Section 5.8, but semijoins and antijoins are simpler to use when the filtering relies on conditions from another table.

Suppose that we are interested in the revenue of our business for days in February with subzero temperatures. First, we can create a table called `filter_data` listing all such days:

With `data.table`:

```r
rev_data$DATE <- as.Date(rev_data$DATE)
weather_data$DATE <- as.Date(weather_data$DATE)
filter_data <- weather_data[TEMPERATURE < 0 &
    DATE %between%
    c("2020-02-01",
    "2020-02-29"),]
```

With `dplyr`:

```r
rev_data$DATE <- as.Date(rev_data$DATE)
weather_data$DATE <- as.Date(weather_data$DATE)
weather_data %>% filter(TEMPERATURE < 0,
    between(DATE,
    as.Date("2020-02-01"),
    as.Date("2020-02-29"))
) -> filter_data
```

Next, we can use a semijoin to extract the rows of `rev_data` corresponding to the days of `filter_data`:

With `data.table`:

```r
setkey(rev_data, DATE)
rev_data[rev_data[filter_data,
    which = TRUE]]
```

With `dplyr`:

```r
rev_data %>% semi_join(    filter_data,
    by = "DATE")
```

If instead we wanted to find all days *except* the days in February with subzero temperatures, we could perform an antijoin:

With `data.table`:

```r
setkey(rev_data, DATE)
rev_data[!filter_data]
```

With `dplyr`:

```r
rev_data %>% anti_join(    filter_data,
    by = "DATE")
```
Exercise 5.26. We return to the oslo-biomarkers.xlsx data from Exercises 5.8 and 5.25. Load the data frame that you created in Exercise 5.25 (or copy the code from its solution). You should also load the oslo-covariates.xlsx data from the book’s web page - it contains information about the patients, such as age, gender and smoking habits.

Then do the following using data.table and/or dplyr/tidy:

1. Merge the wide data frame from Exercise 5.25 with the oslo-covariates.xlsx data, using patient ID as key.
2. Use the oslo-covariates.xlsx data to select data for smokers from the wide data frame Exercise 5.25.

5.13 Scraping data from websites

Web scraping is the process of extracting data from a webpage. For instance, let’s say that we’d like to download the list of Nobel laureates from the Wikipedia page https://en.wikipedia.org/wiki/List_of_Nobel_laureates. As with most sites, the text and formatting of the page is stored in an HTML file. In most browsers, you can view the HTML code by right-clicking on the page and choosing View page source. As you can see, all the information from the table can be found there, albeit in a format that is only just human-readable:

```html
...<tbody><tr>
<th>Year</th>
<th width="18%"><a href="/wiki/List_of_Nobel_laureates_in_Physics" title="List of Nobel laureates in Physics">Physics</a></th>
<th width="16%"><a href="/wiki/List_of_Nobel_laureates_in_Chemistry" title="List of Nobel laureates in Chemistry">Chemistry</a></th>
<th width="18%"><a href="/wiki/List_of_Nobel_laureates_in_Physiology_or_Medicine" title="List of Nobel laureates in Physiology or Medicine">Physiology</a></th>
<th width="16%"><a href="/wiki/List_of_Nobel_laureates_in_Literature" title="List of Nobel laureates in Literature">Literature</a></th>
<th width="16%"><a href="/wiki/List_of_Nobel_Peace_Prize_laureates" title="List of Nobel Peace Prize laureates">Peace</a></th>
<th width="15%"><a href="/wiki/List_of_Nobel_laureates_in_Economics" class="mw-redirect" title="List of Nobel laureates in Economics">Economics</a></th>
</tr>
```
To get hold of the data from the table, we could perhaps select all rows, copy them and paste them into a spreadsheet software such as Excel. But it would be much more convenient to be able to just import the table to R straight from the HTML file. Because tables written in HTML follow specific formats, it is possible to write code that automatically converts them to data frames in R. The `rvest` package contains a number of functions for that. Let’s install it:

```r
install.packages("rvest")
```

To read the entire Wikipedia page, we use:

```r
library(rvest)
wiki <- read_html(url)
```

The object `wiki` now contains all the information from the page - you can have a quick look at it by using `html_text`:

```r
html_text(wiki)
```

That is more information than we need. To extract all tables from `wiki`, we can use `html_nodes`:
tables <- html_nodes(wiki, "table")

The first table, starting with the HTML code
<table class="wikitable sortable"><tbody><tr><th>Year</th></tr>

is the one we are looking for. To transform it to a data frame, we use html_table as follows:

laureates <- html_table(tables[[1]], fill = TRUE)

View(laureates)

The rvest package can also be used for extracting data from more complex website structures using the SelectorGadget tool in the web browser Chrome. This let’s you select the page elements that you wish to scrape in your browser, and helps you create the code needed to import them to R. For an example of how to use it, run vignette("selectorgadget").

~

Exercise 5.27. Scrape the table containing different keytar models from https://en.wikipedia.org/wiki/List_of_keytars. Perform the necessary operations to convert the Dates column to numeric.

5.14 Other commons tasks

5.14.1 Deleting variables

If you no longer need a variable, you can delete it using rm:

my_variable <- c(1, 8, pi)
my_variable
rm(my_variable)
my_variable

This can be useful for instance if you have loaded a data frame that no longer is needed and takes up a lot of memory. If you, for some reason, want to wipe all your variables, you can use ls, which returns a vector containing the names of all variables, in combination with rm:

Use this at your own risk! This deletes all currently loaded # variables.

Uncomment to run:
rm(list = ls())
Variables are automatically deleted when you exit R (unless you choose to save your workspace). On the rare occasions where I want to wipe all variables from memory, I usually do a restart instead of using `rm`.

5.14.2 Importing data from other statistical packages

The `foreign` library contains functions for importing data from other statistical packages, such as Stata (`read.dta`), Minitab (`read.mtp`), SPSS (`read.spss`), and SAS (XPORT files, `read.xport`). They work just like `read.csv` (see Section 3.3), with additional arguments specific to the file format used for the statistical package in question.

5.14.3 Importing data from databases

R and RStudio have excellent support for connecting to databases. However, this requires some knowledge about databases and topics like ODBC drivers, and is therefore beyond the scope of the book. More information about using databases with R can be found at https://db.rstudio.com/.

5.14.4 Importing data from JSON files

JSON is a common file format for transmitting data between different systems. It is often used in web server systems where users can request data. One example of this is found in the JSON file at https://opendata-download-metobs.smhi.se/api/version/1.0/parameter/2/station/98210/period/latest-months/data.json. It contains daily mean temperatures from Stockholm, Sweden, during the last few months, accessible from the Swedish Meteorological and Hydrological Institute’s server. Have a look at it in your web browser, and then install the `jsonlite` package:

```r
install.packages("jsonlite")
```

We’ll use the `fromJSON` function from `jsonlite` to import the data:

```r
library(jsonlite)
url <- paste("https://opendata-download-metobs.smhi.se/api/version/",
             "1.0/parameter/2/station/98210/period/latest-months/",
             "data.json",
             sep = "")
stockholm <- fromJSON(url)
stockholm
```

By design, JSON files contain lists, and so `stockholm` is a list object. The temperature data that we were looking for is (in this particular case) contained in the list element called `value`:
| stockholm$ value |
Chapter 6

R programming

The tools in Chapters 2-5 will allow you to manipulate, summarise and visualise your data in all sorts of ways. But what if you need to compute some statistic that there isn’t a function for? What if you need automatic checks of your data and results? What if you need to repeat the same analysis for a large number of files? This is where the programming tools you’ll learn about in this chapter, like loops and conditional statements, come in handy. And this is where you take the step from being able to use R for routine analyses to being able to use R for any analysis.

After working with the material in this chapter, you will be able to use R to:

- Write your own R functions,
- Use several new pipe operators,
- Use conditional statements to perform different operations depending on whether or not a condition is satisfied,
- Iterate code operations multiple times using loops,
- Iterate code operations multiple times using functionals,
- Measure the performance of your R code.

6.1 Functions

Suppose that we wish to compute the mean of a vector x. One way to do this would be to use `sum` and `length`:

```r
x <- 1:100
# Compute mean:
sum(x)/length(x)
```

Now suppose that we wish to compute the mean of several vectors. We could do this by repeated use of `sum` and `length`:
x <- 1:100
y <- 1:200
z <- 1:300

Compute means:
sum(x)/length(x)
sum(y)/length(y)
sum(z)/length(x)

But wait! I made a mistake when I copied the code to compute the mean of \(z \) - I forgot to change \(\text{length}(x) \) to \(\text{length}(z) \)! This is an easy mistake to make when you repeatedly copy and paste code. In addition, repeating the same code multiple times just doesn’t look good. It would be much more convenient to have a single function for computing the means. Fortunately, such a function exists - \text{mean}:

Compute means
mean(x)
mean(y)
mean(z)

As you can see, using \text{mean} makes the code shorter and easier to read and reduces the risk of errors induced by copying and pasting code (we only have to change the argument of one function instead of two).

You’ve already used a ton of different functions in R: functions for computing means, manipulating data, plotting graphics, and more. All these functions have been written by somebody who thought that they needed to repeat a task (e.g. computing a mean or plotting a bar chart) over and over again. And in such cases, it is much more convenient to have a function that does that task than to have to write or copy code every time you want to do it. This is true also for your own work - whenever you need to repeat the same task several times, it is probably a good idea to write a function for it. It will reduce the amount of code you have to write and lessen the risk of errors caused by copying and pasting old code. In this section, you will learn how to write your own functions.

6.1.1 Creating functions

For the sake of the example, let’s say that we wish to compute the mean of several vectors but that the function \text{mean} doesn’t exist. We would therefore like to write our own function for computing the mean of a vector. An R function takes some variables as input (arguments or parameters) and returns an object. Functions are defined using \text{function}. The definition follows a particular format:

\text{function_name} <- \text{function}(\text{argument1, argument2, ...})
{
 # ...
}
In the case of our function for computing a mean, this could look like:

```r
average <- function(x) {
  avg <- sum(x)/length(x)
  return(avg)
}
```

This defines a function called `average`, that takes an object called `x` as input. It computes the sum of the elements of `x`, divides that by the number of elements in `x`, and returns the resulting mean.

If we now make a call to `average(x)`, our function will compute the mean value of the vector `x`. Let’s try it out, to see that it works:

```r
x <- 1:100
y <- 1:200
average(x)  # average(x)
average(y)  # average(y)
```

6.1.2 Local and global variables

Note that despite the fact that the vector was called `x` in the code we used to define the function, `average` works regardless of whether the input is called `x` or `y`. This is because R distinguishes between global variables and local variables. A global variable is created in the global environment outside a function, and is available to all functions (these are the variables that you can see in the Environment panel in RStudio). A local variable is created in the local environment inside a function, and is only available to that particular function. For instance, our `average` function creates a variable called `avg`, yet when we attempt to access `avg` after running `average` this variable doesn’t seem to exist:

```r
average(x)  # average(x)
avg          # avg
```

Because `avg` is a local variable, it is only available inside of the `average` function. Local variables take precedence over global variables inside the functions to which they belong. Because we named the argument used in the function `x`, `x` becomes the name of a local variable in `average`. As far as `average` is concerned, there is only one variable named `x`, and that is whatever object that was given as input to the function, regardless of what its original name was. Any operations performed on the
local variable \(x \) won’t affect the global variable \(x \) at all.

Functions can access global variables:

```r
y_squared <- function() {
  return(y^2)
}
y <- 2
y_squared()
```

But operations performed on global variables inside functions won’t affect the global variable:

```r
add_to_y <- function(n) {
  y <- y + n
}
y <- 1
add_to_y(1)
y
```

Suppose you really need to change a global variable inside a function\(^1\). In that case, you can use an alternative assignment operator, `<<-`, which assigns a value to the variable in the *parent environment* to the current environment. If you use `<<-` for assignment inside a function that is called from the global environment, this means that the assignment takes place in the global environment. But if you use `<<-` in a function (function 1) that is called by another function (function 2), the assignment will take place in the environment for function 2, thus affecting a local variable in function 2. Here is an example of a global assignment using `<<-`:

```r
add_to_y_global <- function(n) {
  y <<- y + n
}
y <- 1
add_to_y_global(1)
y
```

\(^1\)Do you really?
6.1. FUNCTIONS

6.1.3 Will your function work?

It is always a good idea to test if your function works as intended, and to try to figure out what can cause it to break. Let’s return to our `average` function:

```r
average <- function(x)
{
  avg <- sum(x)/length(x)
  return(avg)
}
```

We’ve already seen that it seems to work when the input `x` is a numeric vector. But what happens if we input something else instead?

```r
average(c(1, 5, 8)) # Numeric input
average(c(TRUE, TRUE, FALSE)) # Logical input
average(c("Lady Gaga", "Tool", "Dry the River")) # Character input
average(data.frame(x = c(1, 1, 1), y = c(2, 2, 1))) # Numeric df
average(data.frame(x = c(1, 5, 8), y = c("A", "B", "C"))) # Mixed type
```

The first two of these render the desired output (the logical values being represented by 0’s and 1’s), but the rest don’t. Many R functions include checks that the input is of the correct type, or checks to see which method should be applied depending on what data type the input is. We’ll learn how to perform such checks in Section 6.3.

As a side note, it is possible to write functions that don’t end with `return`. In that case, the output (i.e. what would be written in the Console if you’d run the code there) from the last line of the function will automatically be returned. I prefer to (almost) always use `return` though, as it is easy to accidentally make the function return nothing by finishing it with a line that yields no output. Below are two examples of how we could have written `average` without a call to `return`. The first doesn’t work as intended, because the function’s final (and only) line doesn’t give any output.

```r
average_bad <- function(x)
{
  avg <- sum(x)/length(x)
}

average_ok <- function(x)
{
  sum(x)/length(x)
}
```

```r
average_bad(c(1, 5, 8))
average_ok(c(1, 5, 8))
```
6.1.4 More on arguments

It is possible to create functions with as many arguments as you like, but it will become quite unwieldy if the user has to supply too many arguments to your function. It is therefore common to provide default values to arguments, which is done by setting a value in the function call. Here is an example of a function that computes x^n, using $n = 2$ as the default:

```r
power_n <- function(x, n = 2)
{
    return(x^n)
}
```

If we don’t supply `n`, `power_n` uses the default $n = 2$:

```r
power_n(3)
```

But if we supply an `n`, `power_n` will use that instead:

```r
power_n(3, 1)
power_n(3, 3)
```

For clarity, you can specify which value corresponds to which argument:

```r
power_n(x = 2, n = 5)
```

…and can then even put the arguments in the wrong order:

```r
power_n(n = 5, x = 2)
```

However, if we only supply `n` we get an error, because there is no default value for `x`:

```r
power_n(n = 5)
```

It is possible to pass a function as an argument. Here is a function that takes a vector and a function as input, and applies the function to the first two elements of the vector:

```r
apply_to_first2 <- function(x, func)
{
    result <- func(x[1:2])
    return(result)
}
```

By supplying different functions to `apply_to_first2`, we can make it perform different tasks:

```r
x <- c(4, 5, 6)
apply_to_first2(x, sqrt)
apply_to_first2(x, is.character)
```
apply_to_first2(x, power_n)

But what if the function that we supply requires additional arguments? Using `apply_to_first2` with `sum` and the vector `c(4, 5, 6)` works fine:

```r
apply_to_first2(x, sum)
```

But if we instead use the vector `c(4, NA, 6)` the function returns `NA`:

```r
x <- c(4, NA, 6)
apply_to_first2(x, sum)
```

Perhaps we’d like to pass `na.rm = TRUE` to `sum` to ensure that we get a numeric result, if at all possible. This can be done by adding `...` to the list of arguments for both functions, which indicates additional parameters (to be supplied by the user) that will be passed to `func`:

```r
apply_to_first2 <- function(x, func, ...) {
  result <- func(x[1:2], ...)
  return(result)
}
```

```r
x <- c(4, NA, 6)
apply_to_first2(x, sum)
apply_to_first2(x, sum, na.rm = TRUE)
```

\~

Exercise 6.1. Write a function that converts temperature measurements in degrees Fahrenheit to degrees Celsius, and apply it to the `Temp` column of the `airquality` data.

Exercise 6.2. Practice writing functions by doing the following:

1. Write a function that takes a vector as input and returns a vector containing its minimum and maximum, without using `min` and `max`.

2. Write a function that computes the mean of the squared values of a vector using `mean`, and that takes additional arguments that it passes on to `mean` (e.g. `na.rm`).

6.1.5 Namespaces

It is possible, and even likely, that you will encounter functions in packages with the same name as functions in other packages. Or, similarly, that there are functions in
packages with the same names as those you have written yourself. This is of course a bit of a headache, but it’s actually something that can be overcome without changing the names of the functions. Just like variables can live in different environments, R functions live in *namespaces*, usually corresponding to either the global environment or the package they belong to. By specifying which namespace to look for the function in, you can use multiple functions that all have the same name.

For example, let’s create a function called `sqrt`. There is already such a function in the `base` package (see `?sqrt`), but let’s do it anyway:

```r
sqrt <- function(x)
{
    return(x^10)
}
```

If we now apply `sqrt` to an object, the function that we just defined will be used:

```r
sqrt(4)
```

But if we want to use the `sqrt` from `base`, we can specify that by writing the namespace (which almost always is the package name) followed by `::` and the function name:

```r
base::sqrt(4)
```

The `::` notation can also be used to call a function or object from a package without loading the package’s namespace:

```r
msleep # Doesn't work if ggplot2 isn't loaded
ggplot2::msleep # Works, without loading the ggplot2 namespace!
```

When you call a function, R will look for it in all active namespaces, following a particular order. To see the order of the namespaces, you can use `search`:

```r
search()
```

Note that the global environment is first in this list - meaning that the functions that you define always will be preferred to functions in packages.

All this being said, note that it is bad practice to give your functions and variables the same names as common functions. Don’t name them `mean`, `c` or `sqrt`. Nothing good can ever come from that sort of behaviour.

Nothing.

2`base` is automatically loaded when you start R, and contains core functions such as `sqrt`.

6.2. MORE ON PIPES

6.1.6 Sourcing other scripts

If you want to reuse a function that you have written in a new script, you can of course copy it into that script. But if you then make changes to your function, you will quickly end up with several different versions of it. A better idea can therefore be to put the function in a separate script, which you then can call in each script where you need the function. This is done using `source`. If, for instance, you have code that defines some functions in a file called `helper-functions.R` in your working directory, you can run it (thus defining the functions) when the rest of your code is run by adding `source("helper-functions.R")` to your code.

Another option is to create an R package containing the function, but that is beyond the scope of this book. Should you choose to go down that route, I highly recommend reading *R Packages* by Wickham and Bryan.

6.2 More on pipes

We have seen how the `magrittr` pipe `%>%` can be used to chain functions together. But there are also other pipe operators that are useful. In this section we’ll look at some of them, and see how you can create functions using pipes.

6.2.1 *Ce ne sont pas non plus des pipes*

Although `%>%` is the most used pipe operator, the `magrittr` package provides a number of other pipes that are useful in certain situations.

One example is when you want to pass variables rather than an entire dataset to the next function. This is needed for instance if you want to use `cor` to compute the correlation between two variables, because `cor` takes two vectors as input instead of a data frame. You can do it using ordinary `%>%` pipes:

```r
library(magrittr)
airquality %>%
  subset(Temp > 80) %>%
  {cor(.\$Temp, .\$Wind)}
```

However, the curly brackets `{}` and the dots `.` makes this a little awkward and difficult to read. A better option is to use the `%$%` pipe, which passes on the names of all variables in your data frame instead:

```r
airquality %$%
  subset(Temp > 80) %$%
  cor(Temp, Wind)
```

If you want to modify a variable using a pipe, you can use the *compound assignment* pipe `%<>%`. The following three lines all yield exactly the same result:

```r
airquality %>%
  subset(Temp > 80) %<>%
  cor(Temp, Wind)
```
CHAPTER 6. R PROGRAMMING

\[
x \leftarrow 1:8; \quad x \leftarrow \sqrt{x}; \quad x
\]
\[
x \leftarrow 1:8; \quad x \%<\%\% \text{sqrt} \rightarrow x; \quad x
\]
\[
x \leftarrow 1:8; \quad x \%<>\% \text{sqrt}; \quad x
\]

As long as the first pipe in the pipeline is the compound assignment operator \%<\%, you can combine it with other pipes:

\[
x \leftarrow 1:8
\]
\[
x \%<>\% \text{subset}(x > 5) \%>\% \text{sqrt}
\]
\[
x
\]

Sometimes you want to do something in the middle of a pipeline, like creating a plot, before continuing to the next step in the chain. The tee operator \%T\% can be used to execute a function without passing on its output (if any). Instead, it passes on the output to its left. Here is an example:

\[
\text{airquality} \%>\%
\text{subset}(\text{Temp} > 80) \%>\%
\text{plot} \%$\%
\text{cor}(\text{Temp}, \text{Wind})
\]

Note that if we’d used an ordinary pipe \%>\% instead, we’d get an error:

\[
\text{airquality} \%>\%
\text{subset}(\text{Temp} > 80) \%>\%
\text{plot} \%$\%
\text{cor}(\text{Temp}, \text{Wind})
\]

The reason is that \text{cor} looks for the variables \text{Temp} and \text{Wind} in the plot object, and not in the data frame. The tee operator takes care of this by passing on the data from its left side.

Remember that if you have a function where data only appears within parentheses, you need to wrap the function in curly brackets:

\[
\text{airquality} \%>\%
\text{subset}(\text{Temp} > 80) \%>\%
\{\text{cat("Number of rows in data:", nrow(.), "\n")}\} \%$\%
\text{cor}(\text{Temp}, \text{Wind})
\]

When using the tee operator, this is true also for call to \text{ggplot}, where you additionally need to wrap the plot object in a call to \text{print}:

\[
\text{library(ggplot2)}
\text{airquality} \%>\%
\text{subset}(\text{Temp} > 80) \%>\%
\{\text{print(ggplot(.), aes(Temp, Wind)) + geom_point()\}} \%$\%
\text{cor}(\text{Temp}, \text{Wind})
\]
6.2. Writing functions with pipes

If you will be reusing the same pipeline multiple times, you may want to create a function for it. Let’s say that you have a data frame containing only numeric variables, and that you want to create a scatterplot matrix (which can be done using `plot`) and compute the correlations between all variables (using `cor`). As an example, you could do this for `airquality` as follows:

```
airquality %>% plot %>% cor
```

To define a function for this combination of operators, we simply write:

```
plot_and_cor <- . %>% plot %>% cor
```

Note that we don’t have to write `function(...)` when defining functions with pipes!

We can now use this function just like any other:

```
# With the airquality data:
airquality %>% plot_and_cor
plot_and_cor(airquality)

# With the bookstore data:
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
purchase <- c(20, 59, 2, 12, 22, 160, 34, 34, 29)
bookstore <- data.frame(age, purchase)
bookstore %>% plot_and_cor
```

Exercise 6.3. Write a function that takes a data frame as input and uses pipes to print the number of NA values in the data, remove all rows with NA values and return a summary of the remaining data.

Exercise 6.4. Pipes are operators, that is, functions that take two variables as input and can be written without parentheses (other examples of operators are + and *). You can define your own operators just as you would any other function. For instance, we can define an operator called `quadratic` that takes two numbers `a` and `b` as input and computes the quadratic expression \((a + b)^2\):

```
`%quadratic%` <- function(a, b) { (a + b)^2 }
2 %quadratic% 3
```

Create an operator called `%against%` that takes two vectors as input and draws a scatterplot of them.
CHAPTER 6. R PROGRAMMING

6.3 Checking conditions

Sometimes you’d like your code to perform different operations depending on whether or not a certain condition is fulfilled. Perhaps you want it to do something different if there is missing data, if the input is a character vector, or if the largest value in a numeric vector is greater than some number. In Section 3.2.3 you learned how to filter data using conditions. In this section, you’ll learn how to use conditional statements for a number of other tasks.

6.3.1 if and else

The most important functions for checking whether a condition is fulfilled are if and else. The basic syntax is

```
if(condition) { do something } else { do something else }
```

The condition should return a single logical value, so that it evaluates to either TRUE or FALSE. If the condition is fulfilled, i.e. if it is TRUE, the code inside the first pair of curly brackets will run, and if it’s not (FALSE), the code within the second pair of curly brackets will run instead.

As a first example, assume that you want to compute the reciprocal of \(x \), \(1/x \), unless \(x = 0 \), in which case you wish to print an error message:

```
x <- 2
if(x == 0) { cat("Error! Division by zero.") } else { 1/x }
```

Now try running the same code with \(x \) set to 0:

```
x <- 0
if(x == 0) { cat("Error! Division by zero.") } else { 1/x }
```

Alternatively, we could check if \(x \neq 0 \) and then change the order of the segments within the curly brackets:

```
x <- 0
if(x != 0) { 1/x } else { cat("Error! Division by zero.") }
```

You don’t have to write all of the code on the same line, but you must make sure that the else part is on the same line as the first }:

```
if(x == 0)
{
  cat("Error! Division by zero.")
} else
{
  1/x
}
```
You can also choose not to have an `else` part at all. In that case, the code inside the curly brackets will run if the condition is satisfied, and if not, nothing will happen:

```r
x <- 0
if(x == 0) { cat("x is 0.") }

x <- 2
if(x == 0) { cat("x is 0.") }
```

Finally, if you need to check a number of conditions one after another, in order to list different possibilities, you can do so by repeated use of `if` and `else`:

```r
if(x == 0)
{
    cat("Error! Division by zero.")
} else if(is.infinite(x))
{
    cat("Error! Division by infinity.")
} else if(is.na(x))
{
    cat("Error! Division by NA.")
} else
{
    1/x
}
```

6.3.2 & & &&

Just as when we used conditions for filtering in Sections 3.2.3 and 5.8.2, it is possible to combine several conditions into one using & (AND) and | (OR). However, the & and | operators are vectorised, meaning that they will return a vector of logical values whenever possible. This is not desirable in conditional statements, where the condition must evaluate to a single value. Using a condition that returns a vector results in a warning message:

```r
if(c(1, 2) == 2) { cat("The vector contains the number 2.
") }
if(c(2, 1) == 2) { cat("The vector contains the number 2.
") }
```

As you can see, only the first element of the logical vector is evaluated by `if`. Usually, if a condition evaluates to a vector, it is because you’ve made an error in your code. Remember, if you really need to evaluate a condition regarding the elements in a vector, you can collapse the resulting logical vector to a single value using any or all.

Some texts recommend using the operators && and || instead of & and | in conditional statements. These work almost like & and |, but force the condition to evaluate to a single logical. I prefer to use & and |, because I want to be notified if my condition...
evaluates to a vector - once again, that likely means that there is an error somewhere in my code!

There is, however, one case where I much prefer `&&` and `||` and `&` and `|` always evaluate all the conditions that you’re combining, while `&&` and `||` don’t: `&&` stops as soon as it encounters a `FALSE` and `||` stops as soon as it encounters a `TRUE`. Consequently, you can put the conditions you wish to combine in a particular order to make sure that they can be evaluated. For instance, you may want first to check that a variable exists, and then check a property. This can be done using `exists` to check whether or not it exists - note that the variable name must be written within quotes:

```r
# a is a variable that doesn't exist

# Using && works:
if(exists("a") && a > 0)
{
  cat("The variable exists and is positive.")
} else { cat("a doesn't exist or is negative.") }

# But using & doesn't, because it attempts to evaluate a>0
# even though a doesn't exist:
if(exists("a") & a > 0)
{
  cat("The variable exists and is positive.")
} else { cat("a doesn't exist or is negative.") }
```

6.3.3 ifelse

It is common that you want to assign different values to a variable depending on whether or not a condition is satisfied:

```r
x <- 2

if(x == 0)
{
  reciprocal <- "Error! Division by zero."
} else
{
  reciprocal <- 1/x
}

reciprocal
```

In fact, this situation is so common that there is a special function for it: `ifelse`:
6.3. CHECKING CONDITIONS

reciprocal <- ifelse(x == 0, "Error! Division by zero.", 1/x)

ifelse evaluates a condition and then returns different answers depending on
whether the condition is TRUE or FALSE. It can also be applied to vectors, in which
case it checks the condition for each element of the vector and returns an answer for
each element:

```r
x <- c(-1, 1, 2, -2, 3)
ifelse(x > 0, "Positive", "Negative")
```

6.3.4 switch

For the sake of readability, it is usually a good idea to try to avoid chains of the type
if() {} else if() {} else if() {} else {}. One function that can be useful
for this is switch, which lets you list a number of possible results, either by position
(a number) or by name:

```r
position <- 2
switch(position,
  "First position",
  "Second position",
  "Third position")

name <- "First"
switch(name,
  First = "First name",
  Second = "Second name",
  Third = "Third name")
```

You can for instance use this to decide what function should be applied to your data:

```r
x <- 1:3
y <- c(3, 5, 4)
method <- "nonparametric2"
cor_xy <- switch(method,
  parametric = cor(x, y, method = "pearson"),
  nonparametric1 = cor(x, y, method = "spearman"),
  nonparametric2 = cor(x, y, method = "kendall"))
cor_xy
```

6.3.5 Failing gracefully

Conditional statements are useful for ensuring that the input to a function you’ve
written is of the correct type. In Section 6.1.3 we saw that our average function
failed if we applied it to a character vector:
average <- function(x) {
 avg <- sum(x)/length(x)
 return(avg)
}

average(c("Lady Gaga", "Tool", "Dry the River"))

By using a conditional statement, we can provide a more informative error message. We can check that the input is numeric and, if it’s not, stop the function and print an error message, using stop:

average <- function(x) {
 if(is.numeric(x)) {
 avg <- sum(x)/length(x)
 return(avg)
 } else {
 stop("The input must be a numeric vector."")
 }
}

average(c(1, 5, 8))
average(c("Lady Gaga", "Tool", "Dry the River"))

Exercise 6.5. Which of the following conditions are TRUE? First think about the answer, and then check it using R.

x <- 2
y <- 3
z <- -3

1. x > 2
2. x > y | x > z
3. x > y & x > z
4. abs(x*z) >= y

Exercise 6.6. Fix the errors in the following code:
6.4. **Iteration using loops**

We have already seen how you can use functions to make it easier to repeat the same task over and over. But there is still a part of the puzzle missing - what if, for example, you wish to apply a function to each column of a data frame? What if you want to apply it to data from a number of files, one at a time? The solution to these problems is to use *iteration*. In this section, we'll explore how to perform iteration using *loops*.

6.4.1 **for loops**

for loops can be used to run the same code several times, with different settings, e.g. different data, in each iteration. Their use is perhaps best explained by some examples. We create the loop using *for*, give the name of a *control variable* and a vector containing its values (the control variable controls how many iterations to run) and then write the code that should be repeated in each iteration of the loop. In each iteration, a new value of the control variable is used in the code, and the loop stops when all values have been used.

As a first example, let’s write a *for* loop that runs a block of code five times, where the block prints the current iteration number:

```r
for(i in 1:5)
{
    cat("Iteration", i, "\n")
}
```

This is equivalent to writing:

```r
cat("Iteration", 1, "\n")
cat("Iteration", 2, "\n")
cat("Iteration", 3, "\n")
cat("Iteration", 4, "\n")
cat("Iteration", 5, "\n")
```

The upside is that we didn’t have to copy and edit the same code multiple times - and as you can imagine, this benefit becomes even more pronounced if you have more complicated code blocks.

```r
x <- c(1, 2, pi, 8)
# Only compute square roots if x exists
# and contains positive values:
if(exists(x)) { if(x > 0) { sqrt(x) } }
```
CHAPTER 6. R PROGRAMMING

The values for the control variable are given in a vector, and the code block will be run once for each element in the vector - we say the we loop over the values in the vector. The vector doesn’t have to be numeric - here is an example with a character vector:

```r
for(word in c("one", "two", "five hundred and fifty five"))
{
  cat("Iteration", word, "\n")
}
```

Of course, loops are used for so much more than merely printing text on the screen. A common use is to perform some computation and then store the result in a vector. In this case, we must first create an empty vector to store the result in, e.g. using `vector`, which creates an empty vector of a specific type and length:

```r
squares <- vector("numeric", 5)
for(i in 1:5)
{
  squares[i] <- i^2
}
```

In this case, it would have been both simpler and computationally faster to compute the squared values by running `(1:5)^2`. This is known as a vectorised solution, and is very important in R. We’ll discuss vectorised solutions in detail in Section 6.5.

When creating the values used for the control variable, we often wish to create different sequences of numbers. Two functions that are very useful for this are `seq`, which creates sequences, and `rep`, which repeats patterns:

```r
seq(0, 100)
seq(0, 100, by = 10)
seq(0, 100, length.out = 21)

rep(1, 4)
rep(c(1, 2), 4)
rep(c(1, 2), c(4, 2))
```

Finally, `seq_along` can be used to create a sequence of indices for a vector of a data frame, which is useful if you wish to iterate some code for each element of a vector or each column of a data frame:

```r
seq_along(airquality) # Gives the indices of all column of the data frame
seq_along(airquality$Temp) # Gives the indices of all elements of the vector
```
Here is an example of how to use `seq_along` to compute the mean of each column of a data frame:

```r
# Compute the mean for each column of the airquality data:
means <- vector("double", ncol(airquality))

# Loop over the variables in airquality:
for(i in seq_along(airquality)) {
    means[i] <- mean(airquality[[i]], na.rm = TRUE)
}

# Check that the results agree with those from the colMeans function:
means
colMeans(airquality, na.rm = TRUE)
```

The line inside the loop could have read `means[i] <~ mean(airquality[,i], na.rm = TRUE)`, but that would have caused problems if we’d used it with a `data.table` or `tibble` object; see Section 5.9.4.

Finally, we can also change the values of the data in each iteration of the loop. Some machine learning methods require that the data is standardised, i.e. that all columns have mean 0 and standard deviation 1. This is achieved by subtracting the mean from each variable and then dividing each variable by its standard deviation. We can write a function for this that uses a loop, changing the values of a column in each iteration:

```r
standardise <- function(df, ...) {
    for(i in seq_along(df)) {
        df[[i]] <- (df[[i]] - mean(df[[i]], ...))/sd(df[[i]], ...)
    }
    return(df)
}

# Try it out:
aqs <- standardise(airquality, na.rm = TRUE)
colMeans(aqs, na.rm = TRUE) # Non-zero due to floating point arithmetics!
sd(aqs$Wind)
```

Exercise 6.7. Practice writing `for` loops by doing the following:
1. Compute the mean temperature for each month in the `airquality` dataset using a loop rather than an existing function.

2. Use a `for` loop to compute the maximum and minimum value of each column of the `airquality` data frame, storing the results in a data frame.

3. Make your solution to the previous task reusable by writing a function that returns the maximum and minimum value of each column of a data frame.

Exercise 6.8. Use `rep` or `seq` to create the following vectors:

1. 0.25 0.5 0.75 1
2. 1 1 1 2 2 5

Exercise 6.9. As an alternative to `seq_along(airquality)` and `seq_along(airquality$Temp)`, we could create the same sequences using `1:ncol(airquality)` and `1:length(airquality$Temp)`. Use `x <- c()` to create a vector of length zero. Then create loops that use `seq_along(x)` and `1:length(x)` as values for the control variable. How many iterations are the two loops run? Which solution is preferable?

Exercise 6.10. An alternative to standardisation is *normalisation*, where all numeric variables are rescaled so that their smallest value is 0 and their largest value is 1. Write a function that normalises the variables in a data frame containing numeric columns.

Exercise 6.11. The function `list.files` can be used to create a vector containing the names of all files in a folder. The `pattern` argument can be used to supply a regular expression describing a file name pattern. For instance, if `pattern = "\.csv\$"` is used, only `.csv` files will be listed.

Create a loop that goes through all `.csv` files in a folder and prints the names of the variables for each file.

6.4.2 Loops within loops

In some situations, you’ll want to put a loop inside another loop. Such loops are said to be *nested*. An example is if we want to compute the correlation between all pairs of variables in `airquality`, and store the result in a matrix:

```r
cor_mat <- matrix(NA, nrow = ncol(airquality), ncol = ncol(airquality))
for(i in seq_along(airquality)) {
  for(j in seq_along(airquality)) {
    cor_mat[i, j] <- cor(airquality[[i]], airquality[[j]],
```
use = "pairwise.complete")
}

Element [i, j] of the matrix now contains the correlation between
variables i and j:
cor_mat

Once again, there is a vectorised solution to this problem, given by cor(airquality,
use = "pairwise.complete"). As we will see in Section 6.6, vectorised solutions
like this can be several times faster than solutions that use nested loops. In general,
solutions involving nested loops tend to be fairly slow - but on the other hand, they
are often easy and straightforward to implement.

6.4.3 Keeping track of what’s happening

Sometimes each iteration of your loop takes a long time to run, and you’ll want to
monitor its progress. This can be done using printed messages or a progress bar in
the Console panel, or sound notifications. We’ll showcase each of these using a loop
containing a call to Sys.sleep, which pauses the execution of R commands for a
short time (determined by the user).

First, we can use cat to print a message describing the progress. Adding \r to
the end of a string allows us to print all messages on the same line, with each new
message replacing the old one:

Print each message on a new same line:
for(i in 1:5)
{
 cat("Step", i, "out of 5
"
 Sys.sleep(1) # Sleep for 1 second
}

Replace the previous message with the new one:
for(i in 1:5)
{
 cat("Step", i, "out of 5"
 Sys.sleep(1) # Sleep for one second
}

Adding a progress bar is a little more complicated, because we must first start the
bar by using txtProgressBar and the update it using setTxtProgressBar:

sequence <- 1:5
pbar <- txtProgressBar(min = 0, max = max(sequence), style = 3)
for(i in sequence)
Finally, the `beepr` package\(^3\) can be used to play sounds, with the function `beep`:

```r
install.packages("beepr")

library(beepr)

# Play all 11 sounds available in beepr:
for(i in 1:11)
{
    beep(sound = i)
    Sys.sleep(2) # Sleep for 2 seconds
}
```

6.4.4 Loops and lists

In our previous examples of loops, it has always been clear from the start how many iterations the loop should run and what the length of the output vector (or data frame) should be. This isn’t always the case. To begin with, let’s consider the case where the length of the output is unknown or difficult to know in advance. Let’s say that we want to go through the `airquality` data to find days that are extreme in the sense that at least one variable attains its maximum on those days. That is, we wish to find the index of the maximum of each variable, and store them in a vector. Because several days can have the same temperature or wind speed, there may be more than one such maximal index for each variable. For that reason, we don’t know the length of the output vector in advance.

In such cases, it is usually a good idea to store the result from each iteration in a list (Section 5.2), and then collect the elements from the list once the loop has finished. We can create an empty list with one element for each variable in `airquality` using `vector`:

```r
# Create an empty list with one element for each variable in airquality:
max_list <- vector("list", ncol(airquality))

# Naming the list elements will help us see which variable the maximal indices belong to:
names(max_list) <- names(airquality)
```

\(^3\)Arguably the best add-on package for R.
6.4. Iteration using loops

```r
# Loop over the variables to find the maxima:
for(i in seq_along(airquality))
{
    # Find indices of maximum values:
    max_index <- which(airquality[[i]] == max(airquality[[i]],
                   na.rm = TRUE))

    # Add indices to list:
    max_list[[i]] <- max_index
}

# Check results:
max_list

# Collapse to a vector:
extreme_days <- unlist(max_list)
```

(In this case, only the variables Month and Days have duplicate maximum values.)

6.4.5 while loops

In some situations, we want to run a loop until a certain condition is met, meaning that we don’t know in advance how many iterations we’ll need. This is more common in numerical optimisation and simulation, but sometimes also occurs in data analyses.

When we don’t know in advance how many iterations that are needed, we can use while loops. Unlike for loops, that iterate a fixed number of times, while loops keep iterating as long as some specified condition is met. Here is an example where the loop keeps iterating until i^2 is greater than 100:

```r
i <- 1

while(i^2 <= 100)
{
    cat(i,"squared is", i^2, "\n")
    i <- i +1
}
```

The code block inside the loop keeps repeating until the condition $i^2 \leq 100$ no longer is satisfied. We have to be a little bit careful with this condition - if we set it in such a way that it is possible that the condition always will be satisfied, the loop will just keep running and running - creating what is known as an infinite loop. If you’ve accidentally created an infinite loop, you can break it by pressing the Stop...
button at the top of the Console panel in RStudio.

In Section 5.3.3 we saw how `rle` can be used to find and compute the lengths of runs of equal values in a vector. We can use nested `while` loops to create something similar. `while` loops are a good choice here, because we don’t know how many runs are in the vector in advance. Here is an example, which you’ll study in more detail in Exercise 6.12:

```r
# Create a vector of 0's and 1's:
x <- rep(c(0, 1, 0, 1, 0), c(5, 1, 4, 2, 7))

# Create empty vectors where the results will be stored:
run_values <- c()
run_lengths <- c()

# Set the initial condition:
i <- 1

# Iterate over the entire vector:
while(i < length(x))
{
  # A new run starts:
  run_length <- 1
  cat("A run starts at i =", i, "\n")

  # Check how long the run continues:
  while(x[i+1] == x[i] & i < length(x))
  {
    run_length <- run_length + 1
    i <- i + 1
  }
  i <- i + 1

  # Save results:
  run_values <- c(run_values, x[i-1])
  run_lengths <- c(run_lengths, run_length)
}

# Present the results:
data.frame(run_values, run_lengths)
```

Exercise 6.12. Consider the nested `while` loops in the run length example above.
Go through the code and think about what happens in each step. What happens when \(i \) is 1? When it is 5? When it is 6? Answer the following questions:

1. What does the condition for the outer while loop check? Why is it needed?
2. What does the condition for the inner while loop check? Why is it needed?
3. What does the line `run_values <- c(run_values, x[i-1])` do?

Exercise 6.13. The control statements `break` and `next` can be used inside both `for` and `while` loops to control their behaviour further. `break` stops a loop, and `next` skips to the next iteration of it. Use these functions to modify the following piece of code so that the loop skips to the next iteration if \(x[i] \) is 0, and breaks if \(x[i] \) is `NA`:

```r
x <- c(1, 5, 8, 0, 20, 0, 3, NA, 18, 2)
for(i in seq_along(x))
{
  cat("Step", i, "- reciprocal is", 1/x[i], "\n")
}
```

Exercise 6.14. Using the `cor_mat` computation from Section 6.4.2, write a function that computes all pairwise correlations in a data frame, and uses `next` to only compute correlations for numeric variables. Test your function by applying it to the `msleep` data from `ggplot2`. Could you achieve the same thing without using `next`?

6.5 Iteration using vectorisation and functionals

Many operators and functions in R take vectors as input and handle them in a highly efficient way, usually by passing the vector on to an optimised function written in the C programming language\(^4\). So if we want to compute the squares of the numbers in a vector, we don’t need to write a loop:

```r
squares <- vector("numeric", 5)
for(i in 1:5)
{
  squares[i] <- i^2
}
squares
```

Instead, we can simply apply the `^` operator, which uses fast C code to compute the squares:

\(^4\)Unlike R, C is a low-level language that allows the user to write highly specialised (and complex) code to perform operations very quickly.
These types of functions and operators are called *vectorised*. They take a vector as input and apply a function to all its elements, meaning that we can avoid slower solutions utilising loops in R\(^5\). Try to use vectorised solutions rather than loops whenever possible - it makes your code both easier to read and faster to run.

A related concept is *functionals*, which are functions that contain a `for` loop. Instead of writing a `for` loop, you can use a functional, supplying data, a function that should be applied in each iteration of the loop, and a vector to loop over. This won’t necessarily make your loop run faster, but it does have other benefits:

- *Shorter code*: functionals allow you to write more concise code. Some would argue that they also allow you to write code that is easier to read, but that is obviously a matter of taste.
- *Efficient*: functionals handle memory allocation and other small tasks efficiently, meaning that you don’t have to worry about creating a vector of an appropriate size to store the result.
- *No changes to your environment*: because all operations now take place in the local environment of the functional, you don’t run the risk of accidentally changing variables in your global environment.
- *No left-overs*: `for` leaves the control variable (e.g. `i`) in the environment, functionals do not.
- *Easy to use with pipes*: because the loop has been wrapped in a function, it lends itself well to being used in a \(\%\%\%\) pipeline.

Explicit loops are preferable when:

- You think that they are easier to read and write.
- Your functions take data frames or other non-vector objects as input.
- Each iteration of your loop depends on the results from previous iterations.

In this section, we’ll see how we can apply functionals to obtain elegant alternatives to (explicit) loops.

6.5.1 A first example with `apply`

The prototypical functional is `apply`, which loops over either the rows or the columns of a data frame\(^6\). The arguments are a dataset, the margin to loop over (1 for rows, 2 for columns) and then the function to be applied.

In Section 6.4.1 we wrote a `for` loop for computing the mean value of each column in a data frame:

\[\text{squares} \leftarrow (1:5)^2\]

\(^5\)The vectorised functions often use loops, but loops written in C, which are much faster.

\(^6\)Actually, over the rows or columns of a matrix - `apply` converts the data frame to a `matrix` object.
6.5. ITERATION USING VECTORISATION AND FUNCTIONALS

Compute the mean for each column of the airquality data:
means <- vector("double", ncol(airquality))

Loop over the variables in airquality:
for(i in seq_along(airquality))
{
 means[i] <- mean(airquality[[i]], na.rm = TRUE)
}

Using apply, we can reduce this to a single line. We wish to use the airquality data, loop over the columns (margin 2) and apply the function mean to each column:

apply(airquality, 2, mean)

Rather elegant, don’t you think?

Additional arguments can be passed to the function inside apply by adding them to the end of the function call:

apply(airquality, 2, mean, na.rm = TRUE)

~

Exercise 6.15. Use apply to compute the maximum and minimum value of each column of the airquality data frame. Can you write a function that allows you to compute both with a single call to apply?

6.5.2 Variations on a theme

There are several variations of apply that are tailored to specific problems:

- lapply: takes a function and vector/list as input, and returns a list.
- sapply: takes a function and vector/list as input, and returns a vector or matrix.
- vapply: a version of sapply with additional checks of the format of the output.
- tapply: for looping over groups, e.g. when computing grouped summaries.
- rapply: a recursive version of tapply.
- mapply: for applying a function to multiple arguments; see Section 6.5.7.
- eapply: for applying a function to all objects in an environment.

We have already seen several ways to compute the mean temperature for different months in the airquality data (Sections 3.8 and 5.7.7, and Exercise 6.7). The *apply family offer several more:

Create a list:
temps <- split(airquality$Temp, airquality$Month)
lapply(temps, mean)
sapply(temps, mean)
vapply(temps, mean, vector("numeric", 1))
tapply(airquality$Temp, airquality$Month, mean)

There is, as that delightful proverb goes, more than one way to skin a cat.

Exercise 6.16. Use an *apply function to simultaneously compute the monthly maximum and minimum temperature in the airquality data frame.

Exercise 6.17. Use an *apply function to simultaneously compute the monthly maximum and minimum temperature and windspeed in the airquality data frame.

Hint: start by writing a function that simultaneously computes the maximum and minimum temperature and windspeed for a data frame containing data from a single month.

6.5.3 purrr

If you feel enthusiastic about *skinning cats* using functionals instead of loops, the tidyverse package purrr is a great addition to your toolbox. It contains a number of specialised alternatives to the *apply functions. More importantly, it also contains certain shortcuts that come in handy when working with functionals. For instance, it is fairly common to define a short function inside your functional, which is useful for instance when you don’t want the function to take up space in your environment. This can be done a little more elegantly with purrr functions using a shortcut denoted by ~. Let’s say that we want to standardise all variables in airquality. The map function is the purrr equivalent of lapply. We can use it with or with the shortcut, and with or without pipes (we mention the use of pipes now because it will be important in what comes next):

Base solution:
lapply(airquality, function(x) { (x-mean(x))/sd(x) })

Base solution with pipe:
library(magrittr)
airquality %>% lapply(function(x) { (x-mean(x))/sd(x) })

purrr solution:
library(purrr)
map(airquality, function(x) { (x-mean(x))/sd(x) })
We can make the purrr solution less verbose using a shortcut:
map(airquality, ~(-.-mean(.))/sd(.))

purrr solution with pipe and shortcut:
airquality %>% map(-.-mean(.))/sd(.))

Where this shortcut really shines is if you need to use multiple functionals. Let’s say that we want to standardise the airquality variables, compute a summary and then extract columns 2 and 5 from the summary (which contains the 1st and 3rd quartile of the data):

Impenetrable base solution:
lapply(lapply(lapply(airquality, function(x) { (x-mean(x))/sd(x) }), summary), function(x) { x[c(2, 5)] })

Base solution with pipe:
airquality %>%
lapply(function(x) { (x-mean(x))/sd(x) }) %>%
lapply(summary) %>%
lapply(function(x) { x[c(2, 5)] })

purrr solution:
airquality %>%
map(-.-mean(.))/sd(.)) %>%
map(summary) %>%
map(-.[c(2, 5)])

Once you know the meaning of ~, the purrr solution is a lot cleaner than the base solutions.

6.5.4 Specialised functions

So far, it may seem like map is just like lapply but with a shortcut for defining functions. Which is more or less true. But purrr contains a lot more functionals that you can use, each tailored to specific problems.

For instance, if you need to specify that the output should be a vector of a specific type, you can use:

- `map_dbl(data, function)` instead of `vapply(data, function, vector("numeric", length))`,
- `map_int(data, function)` instead of `vapply(data, function, vector("integer", length))`,
• `map_chr(data, function)` instead of `vapply(data, function, vector("character", length))`,
• `map_lgl(data, function)` instead of `vapply(data, function, vector("logical", length))`.

If you need to specify that the output should be a data frame, you can use:

• `map_dfr(data, function)` instead of `sapply(data, function)`.

The ~ shortcut for functions is available for all these `map_*` functions. In case you need to pass additional arguments to the function inside the functional, just add them at the end of the functional call:

```
airquality %>% map_dbl(max)
airquality %>% map_dbl(max, na.rm = TRUE)
```

Another specialised function is the `walk` function. It works just like `map`, but doesn’t return anything. This is useful if you want to apply a function with no output, such as `cat` or `read.csv`:

```
# Returns a list of NULL values:
airquality %>% map(~cat("Maximum:", max(.), "\n"))

# Returns nothing:
airquality %>% walk(~cat("Maximum:", max(.), "\n"))
```

Exercise 6.18. Use a `map_*` function to simultaneously compute the monthly maximum and minimum temperature in the `airquality` data frame, returning a vector.

6.5.5 Exploring data with functionals

Functionals are great for creating custom summaries of your data. For instance, if you want to check the data type and number of unique values of each variable in your dataset, you can do that with a functional:

```
library(ggplot2)
diamonds %>% map_dfr(~(data.frame(unique_values = length(unique(.)), class = class(.))))
```

You can of course combine `purrr` functionals with functions from other packages, e.g. to replace `length(unique(.))` with a function from your favourite data manipulation package:

```
# Using uniqueN from data.table:
library(data.table)
```

When creating summaries it can often be useful to be able to loop over both the elements of a vector and their indices. In purrr, this is done using the usual map* functions, but with an i (for index) in the beginning of their names, e.g. imap and iwalk:

```
# Returns a list of NULL values:
imap(airquality, ~ cat(.y, " ": ", median(.x), "\n", sep = ""))

# Returns nothing:
iwalk(airquality, ~ cat(.y, " ": ", median(.x), "\n", sep = ""))
```

Note that .x is used to denote the variable, and that .y is used to denote the name of the variable. If i* functions are used on vectors without element names, indices are used instead. The names of elements of vectors can be set using set_names:

```
# Without element names:
x <- 1:5
iwalk(x, ~ cat(.y, " ": ", exp(.x), "\n", sep = ""))

# Set element names:
x <- set_names(x, c("exp(1)", "exp(2)", "exp(3)", "exp(4)", "exp(5)"))
iwalk(x, ~ cat(.y, " ": ", exp(.x), "\n", sep = ""))
```

Exercise 6.19. Write a function that takes a data frame as input and returns the following information about each variable in the data frame: variable name, number of unique values, data type and number of missing values. The function should, as you will have guessed, use a functional.

Exercise 6.20. In Exercise 6.11 you wrote a function that printed the names and variables for all .csv files in a folder given by folder_path. Use purrr functionals to do the same thing.
6.5.6 Keep calm and carry on

Another neat feature of purrr is the safely function, which can be used to wrap a function that will be used inside a functional, and makes sure that the functional returns a result even if there is an error. For instance, let’s say that we want to compute the logarithm of all variables in the msleep data:

```r
library(ggplot2)
msleep
```

Note that some columns are character vectors, which will cause log to throw an error:

```r
log(msleep$name)
log(msleep)
lapply(msleep, log)
map(msleep, log)
```

Note that the error messages we get from lapply and map here don’t give any information about which variable caused the error, making it more difficult to figure out what’s gone wrong.

If first we wrap log with safely, we get a list containing the correct output for the numeric variables, and error messages for the non-numeric variables:

```r
safe_log <- safely(log)
lapply(msleep, safe_log)
map(msleep, safe_log)
```

Not only does this tell us where the errors occur, but it also returns the logarithms for all variables that log actually could be applied to.

If you’d like your functional to return some default value, e.g. NA, instead of an error message, you can use possibly instead of safely:

```r
pos_log <- possibly(log, otherwise = NA)
map(msleep, pos_log)
```

6.5.7 Iterating over multiple variables

A final important case is when you want to iterate over more than one variable. This is often the case when fitting statistical models that should be used for prediction, as you’ll see in Section 8.1.11. Another example is when you wish to create plots for several subsets in your data. For instance, we could create a plot of carat versus price for each combination of color and cut in the diamonds data. To do this for a single combination, we’d use something like this:
6.5. ITERATION USING VECTORISATION AND FUNCTIONALS

library(ggplot2)
library(dplyr)

diamonds %>% filter(cut == "Fair",
 color == "D") %>%
ggplot(aes(carat, price)) +
 geom_point() +
 ggtitle("Fair, D")

To create such a plot for all combinations of color and cut, we must first create a
data frame containing all unique combinations, which can be done using the distinct
function from dplyr:

combos <- diamonds %>% distinct(cut, color)
cuts <- combos$cut
colours <- combos$color

map2 and walk2 from purrr loop over the elements of two vectors, x and y, say. They
combine the first element of x with the first element of y, the second element of x
with the second element of y, and so on - meaning that they won’t automatically loop
over all combinations of elements. That is the reason why we use distinct above to
create two vectors where each pair (x[i], y[i]) correspond to a combination. Apart
from the fact that we add a second vector to the call, map2 and walk2 work just like
map and walk:

Print all pairs:
walk2(cuts, colours, ~cat(.x, .y, "\n"))

Create a plot for each pair:
combos_plots <- map2(cuts, colours, ~{
 diamonds %>% filter(cut == .x,
 color == .y) %>%
ggplot(aes(carat, price)) +
 geom_point() +
 ggtitle(paste(.x, .y, sep =", "))})

View some plots:
combos_plots[[1]]
combos_plots[[30]]

Save all plots in a pdf file, with one plot per page:
pdf("all_combos_plots.pdf", width = 8, height = 8)
combos_plots
dev.off()
The base function `mapply` could also have been used here. If you need to iterate over more than two vectors, you can use `pmap` or `pwalk`, which work analogously to `map2` and `walk2.

Exercise 6.21. Using the `gapminder` data from the `gapminder` package, create scatterplots of `pop` and `lifeExp` for each combination of `continent` and `year`. Save each plot as a separate `.png` file.

6.6 Measuring code performance

There are probably as many ideas about what good code is as there are programmers. Some prefer readable code; others prefer concise code. Some prefer to work with separate functions for each task, while others would rather continue to combine a few basic functions in new ways. Regardless of what you consider to be good code, there are a few objective measures that can be used to assess the quality of your code. In addition to writing code that works and is bug-free, you’d like your code to be:

- **Fast**: meaning that it runs quickly. Some tasks can take anything from second to weeks, depending on what code you write for them. Speed is particularly important if you’re going to run your code many times.
- **Memory efficient**: meaning that it uses as little of your computer’s memory as possible. Software running on your computer uses its memory - its RAM - to store data. If you’re not careful with RAM, you may end up with a full memory and a sluggish or frozen computer. Memory efficiency is critical if you’re working with big datasets, that take up a lot of RAM to begin with.

In this section we’ll have a look at how you can measure the speed and memory efficiency of R functions. A caveat is that while speed and memory efficiency are important, the most important thing is to come up with a solution that works in the first place. You should almost always start by solving a problem, and then worry about speed and memory efficiency, not the other way around. The reasons for this is that efficient code often is more difficult to write, read, and debug, which can slow down the process of writing it considerably.

Note also, that speed and memory usage is system dependent - the clock frequency and architecture of your processor and speed and size of your RAM will affect how your code performs, as will what operating system you use and what other programs you are running at the same time. That means that if you wish to compare how two functions perform, you need to compare them on the same system under the same conditions.

As a side note, a great way to speed up functions that use either loops or functionals is parallelisation. We cover that topic in Section 10.2.
6.6. MEASURING CODE PERFORMANCE

6.6.1 Timing functions

To measure how long a piece of code takes to run, we can use `system.time` as follows:

```r
rtime <- system.time{
  x <- rnorm(1e6)
  mean(x)
  sd(x)
}

# elapsed is the total time it took to execute the code:
rtime
```

This isn’t the best way of measuring computational time though, and doesn’t allow us to compare different functions easily. Instead, we’ll use the `bench` package, which contains a function called `mark` that is very useful for measuring the execution time of functions and blocks of code. Let’s start by installing it:

```r
install.packages("bench")
```

In Section 6.1.1 we wrote a function for computing the mean of a vector:

```r
average <- function(x)
{
  return(sum(x)/length(x))
}
```

Is this faster or slower than `mean`? We can use `mark` to apply both functions to a vector multiple times, and measure how long each execution takes:

```r
library(bench)
x <- 1:100
bm <- mark(mean(x), average(x))
bm # Or use View(bm) if you don’t want to print the results in the
    # Console panel.
```

`mark` has executed both function `n_itr` times each, and measured how long each execution took to perform. The execution time varies - in the output you can see the shortest (min) and median (median) execution times, as well as the number of iterations per second (itr/sec). Be a little wary of the units for the execution times so that you don’t get them confused - a millisecond (ms, 10^{-3} seconds) is 1,000 microseconds (µs, 1 µs is 10^{-6} seconds), and 1 microsecond is 1,000 nanoseconds (ns, 1 ns is 10^{-9} seconds).

The result here may surprise you - it appears that `average` is faster than `mean`! The reason is that `mean` does a lot of things that `average` does not: it checks the data type and gives error messages if the data is of the wrong type (e.g. `character`), and then traverses the vector twice to lower the risk of errors due to floating point arithmetics.
All of this takes time, and makes the function slower (but safer to use).

We can plot the results using the `ggbeeswarm` package:

```r
install.packages("ggbeeswarm")
plot(bm)
```

It is also possible to place blocks of code inside curly brackets, `{ }`, in `mark`. Here is an example comparing a vectorised solution for computing the squares of a vector with a solution using a loop:

```r
x <- 1:100
bm <- mark(x^2,
     {
       y <- x
       for(i in seq_along(x))
       {
         y[i] <- x[i]*x[i]
       }
       y
     })
plot(bm)
```

Although the above code works, it isn’t the prettiest, and the `bm` table looks a bit confusing because of the long expression for the code block. I prefer to put the code block inside a function instead:

```r
squares <- function(x)
     {
       y <- x
       for(i in seq_along(x))
       {
         y[i] <- x[i]*x[i]
       }
       return(y)
     }

x <- 1:100
bm <- mark(x^2, squares(x))
plot(bm)
```

Note that `squares(x)` is faster than the original code block:
6.6. MEASURING CODE PERFORMANCE

Functions in R are compiled the first time they are run, which often makes them run faster than the same code would have outside of the function. We’ll discuss this further next.

6.6.2 Measuring memory usage - and a note on compilation

mark also shows us how much memory is allocated when running different code blocks, in the mem_alloc column of the output\(^7\).

Unfortunately, measuring memory usage is a little tricky. To see why, restart R (yes, really - this is important!), and then run the following code to benchmark \(x^2\) versus \(\text{squares}(x)\):

```r
library(bench)

squares <- function(x) {
    y <- x
    for(i in seq_along(x)) {
        y[i] <- x[i]*x[i]
    }
    return(y)
}

x <- 1:100
bm <- mark(x^2, squares(x))
bm
```

Judging from the mem_alloc column, it appears that the squares(x) loop not only is slower, but also uses more memory. But wait! Let’s run the code again, just to be

\(^7\)But only if your version of R has been compiled with memory profiling. If you are using a standard build of R, i.e. have downloaded the base R binary from R-project.org, you should be good to go. You can check that memory profiling is enabled by checking that capabilities("profmem") returns TRUE. If not, you may need to reinstall R if you wish to enable memory profiling.
sure of the result:

\[
\text{bm} \leftarrow \text{mark}(x^2, \text{squares}(x))
\]

\[
\text{bm}
\]

This time out, both functions use less memory, and \text{squares} now uses less memory than \text{x}^2. What’s going on?

Computers can’t read code written in R or most other programming languages directly. Instead, the code must be translated to machine code that the computer’s processor uses, in a process known as compilation. R uses just-in-time compilation of functions and loops\(^8\), meaning that it translates the R code for new functions and loops to machine code during execution. Other languages, such as C, use ahead-of-time compilation, translating the code prior to execution. The latter can make the execution much faster, but some flexibility is lost, and the code needs to be run through a compiler ahead of execution, which also takes time. When doing the just-in-time compilation, R needs to use some of the computer’s memory, which causes the memory usage to be greater the first time the function is run. However, if an R function is run again, it has already been compiled, meaning R doesn’t have to allocate memory for compilation.

In conclusion, if you want to benchmark the memory usage of functions, make sure to run them once before benchmarking. Alternatively, if your function takes a long time to run, you can compile it without running it using the \text{cmpfun} function from the \text{compiler} package:

\[
\text{library(compiler)}
\]

\[
\text{squares} \leftarrow \text{cmpfun(squares)}
\]

\[
\text{squares}(1:10)
\]

\~

Exercise 6.22. Write a function for computing the mean of a vector using a \text{for} loop. How much slower than \text{mean} is it? Which function uses more memory?

Exercise 6.23. We have seen three different ways of filtering a data frame to only keep rows that fulfil a condition: using base R, \text{data.table} and \text{dplyr}. Suppose that we want to extract all flights from 1 January from the \text{flights} data in the \text{nycflights13} package:

\[
\text{library(data.table)}
\]

\[
\text{library(dplyr)}
\]

\[
\text{library(nycflights13)}
\]

\`
\text{# Read about the data:}
\`

\(^8\text{Since R 3.4.}\)
?flights

Make a data.table copy of the data:
flights.dt <- as.data.table(flights)

Filtering using base R:
flights0101 <- flights[flights$month == 1 & flights$day == 1,]

Filtering using data.table:
flights0101 <- flights.dt[month == 1 & day == 1,]

Filtering using dplyr:
flights0101 <- flights %>% filter(month == 1, day == 1)

Compare the speed and memory usage of these three approaches. Which has the best performance?
Chapter 7

Modern classical statistics

“Modern classical” may sound like a contradiction, but it is in fact anything but. Classical statistics covers topics like estimation, quantification of uncertainty, and hypothesis testing - all of which are at the heart of data analysis. Since the advent of modern computers, much has happened in this field that has yet to make it to the standard textbooks of introductory courses in statistics. This chapter attempts to bridge part of that gap by dealing with those classical topics, but with a modern approach that uses more recent advances in statistical theory and computational methods. Particular focus is put on how simulation can be used for analyses and for evaluating the properties of statistical procedures.

Whenever it is feasible, our aim in this chapter and the next is to:

- Use hypothesis tests that are based on permutations or the bootstrap rather than tests based on strict assumptions about the distribution of the data or asymptotic distributions,
- To complement estimates and hypothesis tests with computing confidence intervals based on sound methods (including the bootstrap),
- Offer easy-to-use Bayesian methods as an alternative to frequentist tools.

After reading this chapter, you will be able to use R to:

- Generate random numbers,
- Perform simulations to assess the performance of statistical methods,
- Perform hypothesis tests,
- Compute confidence intervals,
- Make sample size computations,
- Report statistical results.
7.1 Simulation and distributions

A random variable is a variable whose value describes the outcome of a random phenomenon. A (probability) distribution is a mathematical function that describes the probability of different outcomes for a random variable. Random variables and distributions are at the heart of probability theory and most, if not all, statistical models.

As we shall soon see, they are also invaluable tools when evaluating statistical methods. A key component of modern statistical work is simulation, in which we generate artificial data that can be used both in the analysis of real data (e.g. in permutation tests and bootstrap confidence intervals, topics that we’ll explore in this chapter) and for assessing different methods. Simulation is possible only because we can generate random numbers, so let’s begin by having a look at how we can generate random numbers in R.

7.1.1 Generating random numbers

The function sample can be used to randomly draw a number of elements from a vector. For instance, we can use it to draw 2 random numbers from the first ten integers:

```r
sample(1:10, 2)
```

Try running the above code multiple times. You’ll get different results each time, because each time it runs the random number generator is in a different state. In most cases, this is desirable (if the results were the same each time we used sample, it wouldn’t be random), but not if we want to replicate a result at some later stage.

When we are concerned about reproducibility, we can use set.seed to fix the state of the random number generator:

```r
# Each run generates different results:
sample(1:10, 2); sample(1:10, 2)

# To get the same result each time, set the seed to a number of your choice:
set.seed(314); sample(1:10, 2)
set.seed(314); sample(1:10, 2)
```

We often want to use simulated data from a probability distribution, such as the normal distribution. The normal distribution is defined by its mean μ and its variance σ^2 (or, equivalently, its standard deviation σ). There are special functions for generating data from different distributions - for the normal distribution it is called rnorm. We specify the number of observations that we want to generate (n) and the parameters of the distribution (the mean mu and the standard deviation sigma):
7.1 Simulation and Distributions

rnorm(n = 10, mu = 2, sigma = 1)

A shorter version:
rnorm(10, 2, 1)

Similarly, there are functions that can be used to compute the quantile function, density function, and cumulative distribution function (CDF) of the normal distribution. Here are some examples for a normal distribution with mean 2 and standard deviation 1:

qnorm(0.9, 2, 1) # Upper 90% quantile of distribution
dnorm(2.5, 2, 1) # Density function f(2.5)
pnorm(2.5, 2, 1) # Cumulative distribution function F(2.5)

Exercise 7.1. Sampling can be done with or without replacement. If replacement is used, an observation can be drawn more than once. Check the documentation for sample. How can you change the settings to sample with replacement? Draw 5 random numbers from the first ten integers, with replacement.

7.1.2 Some common distributions

Next, we provide the syntax for random number generation, quantile functions, density/probability functions and cumulative distribution functions for some of the most commonly used distributions. This section is mainly intended as a reference, for you to look up when you need to use one of these distributions - so there is no need to run all the code chunks below right now.

Normal distribution \(N(\mu, \sigma^2) \) with mean \(\mu \) and variance \(\sigma^2 \):

rnorm(n, mu, sigma) # Generate n random numbers
qnorm(0.95, mu, sigma) # Upper 95% quantile of distribution
dnorm(x, mu, sigma) # Density function f(x)
pnorm(x, mu, sigma) # Cumulative distribution function F(X)

Continuous uniform distribution \(U(a, b) \) on the interval \((a, b)\), with mean \(\frac{a+b}{2} \) and variance \(\frac{(b-a)^2}{12} \):

runif(n, a, b) # Generate n random numbers
qunif(0.95, a, b) # Upper 95% quantile of distribution
dunif(x, a, b) # Density function f(x)
punif(x, a, b) # Cumulative distribution function F(X)

Exponential distribution \(Exp(m) \) with mean \(m \) and variance \(m^2 \):
CHAPTER 7. MODERN CLASSICAL STATISTICS

\(\text{rexp}(n, \frac{1}{m}) \) # Generate n random numbers
\(\text{qexp}(0.95, \frac{1}{m}) \) # Upper 95 % quantile of distribution
\(\text{dexp}(x, \frac{1}{m}) \) # Density function \(f(x) \)
\(\text{pexp}(x, \frac{1}{m}) \) # Cumulative distribution function \(F(X) \)

Gamma distribution \(\Gamma(\alpha, \beta) \) with mean \(\frac{\alpha}{\beta} \) and variance \(\frac{\alpha}{\beta^2} \):
\(\text{rgamma}(n, \alpha, \beta) \) # Generate n random numbers
\(\text{qgamma}(0.95, \alpha, \beta) \) # Upper 95 % quantile of distribution
\(\text{dgamma}(x, \alpha, \beta) \) # Density function \(f(x) \)
\(\text{pgamma}(x, \alpha, \beta) \) # Cumulative distribution function \(F(X) \)

Lognormal distribution \(\mathcal{LN}(\mu, \sigma^2) \) with mean \(\exp(\mu + \sigma^2/2) \) and variance \((\exp(\sigma^2) - 1)\exp(2\mu + \sigma^2) \):
\(\text{rlnorm}(n, \mu, \sigma) \) # Generate n random numbers
\(\text{qlnorm}(0.95, \mu, \sigma) \) # Upper 95 % quantile of distribution
\(\text{dlnorm}(x, \mu, \sigma) \) # Density function \(f(x) \)
\(\text{plnorm}(x, \mu, \sigma) \) # Cumulative distribution function \(F(X) \)

t-distribution \(t(\nu) \) with mean 0 (for \(\nu > 1 \)) and variance \(\frac{\nu}{\nu-2} \) (for \(\nu > 2 \)):
\(\text{rt}(n, \nu) \) # Generate n random numbers
\(\text{qt}(0.95, \nu) \) # Upper 95 % quantile of distribution
\(\text{dt}(x, \nu) \) # Density function \(f(x) \)
\(\text{pt}(x, \nu) \) # Cumulative distribution function \(F(X) \)

Chi-squared distribution \(\chi^2(k) \) with mean \(k \) and variance \(2k \):
\(\text{rchisq}(n, k) \) # Generate n random numbers
\(\text{qchisq}(0.95, k) \) # Upper 95 % quantile of distribution
\(\text{dchisq}(x, k) \) # Density function \(f(x) \)
\(\text{pchisq}(x, k) \) # Cumulative distribution function \(F(X) \)

F-distribution \(F(d_1, d_2) \) with mean \(\frac{d_2}{d_2-2} \) (for \(d_2 > 2 \)) and variance \(\frac{2d_2^2(d_1+d_2-2)}{d_1(d_2-2)^2(d_2-4)} \) (for \(d_2 > 4 \)):
\(\text{rf}(n, d_1, d_2) \) # Generate n random numbers
\(\text{qf}(0.95, d_1, d_2) \) # Upper 95 % quantile of distribution
\(\text{df}(x, d_1, d_2) \) # Density function \(f(x) \)
\(\text{pf}(x, d_1, d_2) \) # Cumulative distribution function \(F(X) \)

Beta distribution \(\text{Beta}(\alpha, \beta) \) with mean \(\frac{\alpha}{\alpha+\beta} \) and variance \(\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} \):
\(\text{rbeta}(n, \alpha, \beta) \) # Generate n random numbers
\(\text{qbeta}(0.95, \alpha, \beta) \) # Upper 95 % quantile of distribution
\(\text{dbeta}(x, \alpha, \beta) \) # Density function \(f(x) \)
\(\text{pbeta}(x, \alpha, \beta) \) # Cumulative distribution function \(F(X) \)
Binomial distribution $Bin(n, p)$ with mean np and variance $np(1 - p)$:

- `rbinom(n, n, p)` # Generate n random numbers
- `qbinom(0.95, n, p)` # Upper 95% quantile of distribution
- `dbinom(x, n, p)` # Probability function $f(x)$
- `pbinom(x, n, p)` # Cumulative distribution function $F(X)$

Poisson distribution $Po(\lambda)$ with mean λ and variance λ:

- `rpois(n, lambda)` # Generate n random numbers
- `qpois(0.95, lambda)` # Upper 95% quantile of distribution
- `dpois(x, lambda)` # Probability function $f(x)$
- `ppois(x, lambda)` # Cumulative distribution function $F(X)$

Negative binomial distribution $NegBin(r, p)$ with mean $\frac{rp}{1-p}$ and variance $\frac{rp}{(1-p)^2}$:

- `rnbinom(n, r, p)` # Generate n random numbers
- `qnbinom(0.95, r, p)` # Upper 95% quantile of distribution
- `dnbinom(x, r, p)` # Probability function $f(x)$
- `pnbinom(x, r, p)` # Cumulative distribution function $F(X)$

Multivariate normal distribution with mean vector μ and covariance matrix Σ:

- `library(MASS)`
- `mvrnorm(n, mu, Sigma)` # Generate n random numbers

Exercise 7.2. Use `runif` and (at least) one of `round`, `ceiling` and `floor` to generate observations from a discrete random variable on the integers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

7.1.3 Assessing distributional assumptions

So how can we know that the functions for generating random observations from distributions work? And when working with real data, how can we know what distribution fits the data? One answer is that we can visually compare the distribution of the generated (or real) data to the target distribution. This can for instance be done by comparing a histogram of the data to the target distribution’s density function.

To do so, we must add `aes(y = ..density..)` to the call to `geom_histogram`, which rescales the histogram to have area 1 (just like a density function has). We can then add the density function using `geom_function`:

- `# Generate data from a normal distribution with mean 10 and standard deviation 1`
generated_data <- data.frame(normal_data = rnorm(1000, 10, 1))

library(ggplot2)
Compare to histogram:
 ggplot(generated_data, aes(x = normal_data)) +
 geom_histogram(colour = "black", aes(y = ..density..)) +
 geom_function(fun = dnorm, colour = "red", size = 2,
 args = list(mean = mean(generated_data$normal_data),
 sd = sd(generated_data$normal_data)))

Try increasing the number of observations generated. As the number of observations increase, the histogram should start to look more and more like the density function.

We could also add a density estimate for the generated data, to further aid the eye here - we'd expect this to be close to the theoretical density function:

Compare to density estimate:
 ggplot(generated_data, aes(x = normal_data)) +
 geom_histogram(colour = "black", aes(y = ..density..)) +
 geom_density(colour = "blue", size = 2) +
 geom_function(fun = dnorm, colour = "red", size = 2,
 args = list(mean = mean(generated_data$normal_data),
 sd = sd(generated_data$normal_data)))

If instead we wished to compare the distribution of the data to a χ^2 distribution, we would change the value of `fun` and `args` in `geom_function` accordingly:

Compare to density estimate:
 ggplot(generated_data, aes(x = normal_data)) +
 geom_histogram(colour = "black", aes(y = ..density..)) +
 geom_density(colour = "blue", size = 2) +
 geom_function(fun = dchisq, colour = "red", size = 2,
 args = list(df = mean(generated_data$normal_data)))

Note that the values of `args` have changed. `args` should always be a list containing values for the parameters of the distribution: `mu` and `sigma` for the normal distribution and `df` for the χ^2 distribution (the same as in Section 7.1.2).

Another option is to draw a quantile-quantile plot, or Q-Q plot for short, which compares the theoretical quantiles of a distribution to the empirical quantiles of the data, showing each observation as a point. If the data follows the theorised distribution, then the points should lie more or less along a straight line.

To draw a Q-Q plot for a normal distribution, we use the geoms `geom_qq` and `geom_qq_line`:

```
7.1. SIMULATION AND DISTRIBUTIONS

# Q-Q plot for normality:
ggplot(generated_data, aes(sample = normal_data)) +
  geom_qq() + geom_qq_line()

For all other distributions, we must provide the quantile function of the distribution (many of which can be found in Section 7.1.2):

# Q-Q plot for the lognormal distribution:
ggplot(generated_data, aes(sample = normal_data)) +
  geom_qq(distribution = qlnorm) +
  geom_qq_line(distribution = qlnorm)

Q-Q-plots can be a little difficult to read. There will always be points deviating from the line - in fact, that’s expected. So how much must they deviate before we rule out a distributional assumption? Particularly when working with real data, I like to compare the Q-Q-plot of my data to Q-Q-plots of simulated samples from the assumed distribution, to get a feel for what kind of deviations can appear if the distributional assumption holds. Here’s an example of how to do this, for the normal distribution:

# Look at solar radiation data for May from the airquality dataset:
May <- airquality[airquality$Month == 5,]

# Create a Q-Q-plot for the solar radiation data, and store it in a list:
qqplots <- list(ggplot(May, aes(sample = Solar.R)) +
  geom_qq() + geom_qq_line() + ggtitle("Actual data"))

# Compute the sample size n:
n <- sum(!is.na(May$Temp))

# Generate 8 new datasets of size n from a normal distribution.
# Then draw Q-Q-plots for these and store them in the list:
for(i in 2:9) {
  generated_data <- data.frame(normal_data = rnorm(n, 10, 1))
  qqplots[[i]] <- ggplot(generated_data, aes(sample = normal_data)) +
    geom_qq() + geom_qq_line() + ggtitle("Simulated data")
}

# Plot the resulting Q-Q-plots side-by-side:
library(patchwork)
(qqplots[[1]] + qqplots[[2]] + qqplots[[3]]) /
(qqplots[[4]] + qqplots[[5]] + qqplots[[6]]) /
You can run the code several times, to get more examples of what Q-Q-plots can look like when the distributional assumption holds. In this case, the tail points in the Q-Q-plot for the solar radiation data deviate from the line more than the tail points in most simulated examples do, and personally, I'd be reluctant to assume that the data comes from a normal distribution.

~

Exercise 7.3. Investigate the sleeping times in the `msleep` data from the `ggplot2` package. Do they appear to follow a normal distribution? A lognormal distribution?

Exercise 7.4. Another approach to assessing distributional assumptions for real data is to use formal hypothesis tests. One example is the Shapiro-Wilk test for normality, available in `shapiro.test`. The null hypothesis is that the data comes from a normal distribution, and the alternative is that it doesn’t (meaning that a low p-value is supposed to imply non-normality).

1. Apply `shapiro.test` to the sleeping times in the `msleep` dataset. According to the Shapiro-Wilk test, is the data normally distributed?

2. Generate 2,000 observations from a $\chi^2(100)$ distribution. Compare the histogram of the generated data to the density function of a normal distribution. Are they similar? What are the results when you apply the Shapiro-Wilk test to the data?

7.1.4 Monte Carlo integration

In this chapter, we will use simulation to compute p-values and confidence intervals, to compare different statistical methods, and to perform sample size computations. Another important use of simulation is in Monte Carlo integration, in which random numbers are used for numerical integration. It plays an important role in for instance statistical physics, computational biology, computational linguistics, and Bayesian statistics; fields that require the computation of complicated integrals.

To create an example of Monte Carlo integration, let’s start by writing a function, `circle`, that defines a quarter-circle on the unit square. We will then plot it using the geom `geom_function`:

```r
circle <- function(x)
{
 return(sqrt(1-x^2))
}
```
7.1. SIMULATION AND DISTRIBUTIONS

ggplot(data.frame(x = c(0, 1)), aes(x)) +
  geom_function(fun = circle)

Let’s say that we are interest in computing the area under quarter-circle. We can
highlight the area in our plot using geom_area:

ggplot(data.frame(x = seq(0, 1, 1e-4)), aes(x)) +
  geom_area(aes(x = x,
    y = ifelse(x^2 + circle(x)^2 <= 1, circle(x), 0)),
    fill = "pink") +
  geom_function(fun = circle)

To find the area, we will generate a large number of random points uniformly in the
unit square. By the law of large numbers, the proportion of points that end up under
the quarter-circle should be close to the area under the quarter-circle\(^1\). To do this,
we generate 10,000 random values for the \(x\) and \(y\) coordinates of each point using
the \(U(0, 1)\) distribution, that is, using runif:

\[
B \leftarrow 1e4
unif_points \leftarrow \text{data.frame}(x = \text{runif}(B), y = \text{runif}(B))
\]

Next, we add the points to our plot:

ggplot(unif_points, aes(x, y)) +
  geom_area(aes(x = x,
    y = ifelse(x^2 + circle(x)^2 <= 1, circle(x), 0)),
    fill = "pink") +
  geom_point(size = 0.5, alpha = 0.25,
    colour = ifelse(unif_points$x^2 + unif_points$y^2 <= 1,
                    "red", "black")) +
  geom_function(fun = circle)

Note the order in which we placed the geoms - we plot the points after the area so
that the pink colour won’t cover the points, and the function after the points so that
the points won’t cover the curve.

To estimate the area, we compute the proportion of points that are below the curve:

mean(unif_points$x^2 + unif_points$y^2 <= 1)

In this case, we can also compute the area exactly: \(\int_0^1 \sqrt{1-x^2} dx = \pi/4 = 0.7853\ldots\).

For more complicated integrals, however, numerical integration methods like Monte
Carlo integration may be required. That being said, there are better numerical inte-
gration methods for low-dimensional integrals like this one. Monte Carlo integration

\(^1\)In general, the proportion of points that fall below the curve will be proportional to the area
under the curve relative to the area of the sample space. In this case the sample space is the unit
square, which has area 1, meaning that the relative area is the same as the absolute area.
is primarily used for higher-dimensional integrals, where other techniques fail.

7.2 Student’s t-test revisited

For decades teachers all over the world have been telling the story of William Sealy Gosset: the head brewer at Guinness who derived the formulas used for the t-test and, following company policy, published the results under the pseudonym “Student”.

Gosset’s work was hugely important, but the passing of time has rendered at least parts of it largely obsolete. His distributional formulas were derived out of necessity: lacking the computer power that we have available to us today, he was forced to impose the assumption of normality on the data, in order to derive the formulas he needed to be able to carry out his analyses. Today we can use simulation to carry out analyses with fewer assumptions. As an added bonus, these simulation techniques often happen to result in statistical methods with better performance than Student’s t-test and other similar methods.

7.2.1 The old-school t-test

The really old-school way of performing a t-test - the way statistical pioneers like Gosset and Fisher would have done it - is to look up p-values using tables covering several pages. There haven’t really been any excuses for doing that since the advent of the personal computer though, so let’s not go further into that. The “modern” version of the old-school t-test uses numerical evaluation of the formulas for Student’s t-distribution to compute p-values and confidence intervals. Before we delve into more modern approaches, let’s look at how we can run an old-school t-test in R.

In Section 3.6 we used `t.test` to run a t-test to see if there is a difference in how long carnivores and herbivores sleep, using the `msleep` data from `ggplot2`\(^2\). First, we subtracted a subset of the data corresponding to carnivores and herbivores, and then we ran the test. There are in fact several different ways of doing this, and it is probably a good idea to have a look at them.

In the approach used in Section 3.6 we created two vectors, using bracket notation, and then used those as arguments for `t.test`:

```r
library(ggplot2)
carnivores <- msleep[msleep$vore == "carni",]
herbivores <- msleep[msleep$vore == "herbi",]
t.test(carnivores$sleep_total, herbivores$sleep_total)
```

Alternatively, we could have used formula notation, as we e.g. did for the linear model in Section 3.7. We’d then have to use the `data` argument in `t.test` to supply the

\(^2\)Note that this is not a random sample of mammals, and so one of the fundamental assumptions behind the t-test isn’t valid in this case. For the purpose of showing how to use the t-test, the data is good enough though.
data. By using `subset`, we can do the subsetting simultaneously:

```r
t.test(sleep_total ~ vore, data = subset(msleep, vore == "carni" | vore == "herbi"))
```

Unless we are interested in keeping the vectors `carnivores` and `herbivores` for other purposes, this latter approach is arguably more elegant.

Speaking of elegance, the `data` argument also makes it easy to run a t-test using pipes. Here is an example, where we use `filter` from `dplyr` to do the subsetting:

```r
library(dplyr)
msleep %>% filter(vore == "carni" | vore == "herbi") %>%
 t.test(sleep_total ~ vore, data = .)
```

We could also use the `magrittr` pipe `%>%` from Section 6.2 to pass the variables from the filtered subset of `msleep`, avoiding the `data` argument:

```r
library(magrittr)
msleep %>% filter(vore == "carni" | vore == "herbi") %>%
 t.test(sleep_total ~ vore)
```

There are even more options than this - the point that I’m trying to make here is that like most functions in R, you can use functions for classical statistics in many different ways. In what follows, I will show you one or two of these, but don’t hesitate to try out other approaches if they seem better to you.

What we just did above was a two-sided t-test, where the null hypothesis was that there was no difference in means between the groups, and the alternative hypothesis that there was a difference. We can also perform one-sided tests using the `alternative` argument. `alternative = "greater"` means that the alternative is that the first group has a greater mean, and `alternative = "less"` means that the first group has a smaller mean. Here is an example with the former:

```r
t.test(sleep_total ~ vore,
 data = subset(msleep, vore == "carni" | vore == "herbi"),
 alternative = "greater")
```

By default, R uses the Welch two-sample t-test, meaning that it is not assumed that the groups have equal variances. If you don’t want to make that assumption, you can add `var.equal = TRUE`:

```r
t.test(sleep_total ~ vore,
 data = subset(msleep, vore == "carni" | vore == "herbi"),
 var.equal = TRUE)
```

In addition to two-sample t-tests, `t.test` can also be used for one-sample tests and paired t-tests. To perform a one-sample t-test, all we need to do is to supply a single vector with observations, along with the value of the mean \( \mu \) under the null
hypothesis. I usually sleep for about 7 hours each night, and so if I want to test whether that is true for an average mammal, I’d use the following:

```
t.test(msleep$sleep_total, mu = 7)
```

As we can see from the output, your average mammal sleeps for 10.4 hours per day. Moreover, the p-value is quite low - apparently, I sleep unusually little for a mammal!

As for paired t-tests, we can perform them by supplying two vectors (where element 1 of the first vector corresponds to element 1 of the second vector, and so on) and the argument `paired = TRUE`. For instance, using the `diamonds` data from `ggplot2`, we could run a test to see if the length x of diamonds with a fair quality of the cut on average equals the width y:

```
fair_diamonds <- subset(diamonds, cut == "Fair")
t.test(fair_diamonds$x, fair_diamonds$y, paired = TRUE)
```

Exercise 7.5. Load the VAS pain data `vas.csv` from Exercise 3.8. Perform a one-sided t-test to see test the null hypothesis that the average VAS among the patients during the time period is less than or equal to 6.

### 7.2.2 Permutation tests

Maybe it was a little harsh to say that Gosset’s formulas have become obsolete. The formulas are mathematical approximations to the distribution of the test statistics under the null hypothesis. The truth is that they work very well as long as your data is (nearly) normally distributed. The two-sample test also works well for non-normal data as long as you have balanced sample sizes, that is, equally many observations in both groups. However, for one-sample tests, and two-sample tests with imbalanced sample sizes, there are better ways to compute p-values and confidence intervals than to use Gosset’s traditional formulas.

The first option that we’ll look at is permutation tests. Let’s return to our mammal sleeping times example, where we wanted to investigate whether there are differences in how long carnivores and herbivores sleep on average:

```
t.test(sleep_total ~ vore, data =
 subset(msleep, vore == "carni" | vore == "herbi"))
```

There are 19 carnivores and 32 herbivores - 51 animals in total. If there are no differences between the two groups, the `vore` labels offer no information about how long the animals sleep each day. Under the null hypothesis, the assignment of `vore` labels to different animals is therefore for all intents and purposes random. To find the distribution of the test statistic under the null hypothesis, we could look at all
7.2. STUDENT’S T-TEST REVISITED

possible ways to assign 19 animals the label carnivore and 32 animals the label herbivore. That is, look at all permutations of the labels. The probability of a result at least as extreme as that obtained in our sample (in the direction of the alternative), i.e. the p-value, would then be the proportion of permutations that yield a result at least extreme as that in our sample. This is known as a permutation test.

Permutation tests were known to the likes of Gosset and Fisher (Fisher’s exact test is a common example), but because the number of permutations of labels often tend to become quite large (76,000 billion, in our carnivore-herbivore example), they lacked the means actually to use them. 76,000 billion permutations may be too many even today, but we can obtain very good approximations of the p-values of permutation tests using simulation.

The idea is that we look at a large number of randomly selected permutations, and check for how many of them we obtain a test statistic that is more extreme than the sample test statistic. The law of large number guarantees that this proportion will converge to the permutation test p-value as the number of randomly selected permutations increases.

Let’s have a go!

```r
Filter the data, to get carnivores and herbivores:
data <- subset(msleep, vore == "carni" | vore == "herbi")

Compute the sample test statistic:
sample_t <- t.test(sleep_total ~ vore, data = data)$statistic

Set the number of random permutations and create a vector to store the result in:
B <- 9999
permutation_t <- vector("numeric", B)

Start progress bar:
pbar <- txtProgressBar(min = 0, max = B, style = 3)

Compute the test statistic for B randomly selected permutations for(i in 1:B) {
 # Draw a permutation of the labels:
data$vore <- sample(data$vore, length(data$vore), replace = FALSE)

 # Compute statistic for permuted sample:
 permutation_t[i] <- t.test(sleep_total ~ vore, data = data)$statistic
}
```
# Update progress bar
setTxtProgressBar(pbar, i)
}
close(pbar)

# In this case, with a two-sided alternative hypothesis, a
# "more extreme" test statistic is one that has a larger
# absolute value than the sample test statistic.

# Compute approximate permutation test p-value:
mean(abs(permutation_t) > abs(sample_t))

In this particular example, the resulting p-value is pretty close to that from the old-school t-test. However, we will soon see examples where the two versions of the t-test differ more.

You may ask why we used 9,999 permutations and not 10,000. The reason is that we avoid p-values that are equal to traditional significance levels like 0.05 and 0.01 this way. If we’d used 10,000 permutations, 500 of which yielded a statistics that had a larger absolute value than the sample statistic, then the p-value would have been exactly 0.05, which would cause some difficulties in trying to determine whether or not the result was significant at the 5 % level. This cannot happen when we use 9,999 permutations instead (500 statistics with a large absolute value yields the p-value 0.050005 > 0.05, and 499 yields the p-value 0.0499 < 0.05).

Having to write a `for` loop every time we want to run a t-test seems unnecessarily complicated. Fortunately, others have tread this path before us. The `MKinfer` package contains a function to perform (approximate) permutation t-tests, which also happens to be faster than our implementation above. Let’s install it:

```r
install.packages("MKinfer")
```

The function for the permutation t-test, `perm.t.test`, works exactly like `t.test`. In all the examples from Section 7.2.1 we can replace `t.test` with `perm.t.test` to run a permutation t-test instead. Like so:

```r
library(MKinfer)
perm.t.test(sleep_total ~ vore, data =
 subset(msleep, vore == "carni" | vore == "herbi"))
```

Note that two p-values and confidence intervals are presented: one set from the permutations and one from the old-school approach - so make sure that you look at the right ones!

You may ask how many randomly selected permutations we need to get an accurate approximation of the permutation test p-value. By default, `perm.t.test` uses 9,999
permutations (you can change that number using the argument \( R \)), which is widely considered to be a reasonable number. If you are running a permutation test with a much more complex (and computationally intensive) statistic, you may have to use a lower number, but avoid that if you can.

### 7.2.3 The bootstrap

A popular method for computing p-values and confidence intervals that resembles the permutation approach is the bootstrap. Instead of drawing permuted samples, new observations are drawn with replacement from the original sample, and then labels are randomly allocated to them. That means that each randomly drawn sample will differ not only in the permutation of labels, but also in what observations are included - some may appear more than once and some not at all.

We will have a closer look at the bootstrap in Section 7.7, where we will learn how to use it for creating confidence intervals and computing p-values for any test statistic. For now, we’ll just note that \texttt{MKinfer} offers a bootstrap version of the t-test, \texttt{boot.t.test}:

```r
library(MKinfer)
boot.t.test(sleep_total ~ vore, data = subset(msleep, vore == "carni" | vore == "herbi"))
```

Both \texttt{perm.test} and \texttt{boot.test} have a useful argument called \texttt{symmetric}, the details of which are discussed in depth in Section 12.3.

### 7.2.4 Saving the output

When we run a t-test, the results are printed in the Console. But we can also store the results in a variable, which allows us to access e.g. the p-value of the test:

```r
library(ggplot2)
carnivores <- msleep[msleep$vore == "carni",]
herbivores <- msleep[msleep$vore == "herbi",]
test_result <- t.test(sleep_total ~ vore, data = subset(msleep, vore == "carni" | vore == "herbi"))

test_result
```

What does the resulting object look like?

```r
str(test_result)
```

As you can see, \texttt{test_result} is a \texttt{list} containing different parameters and vectors for the test. To get the p-value, we can run the following:
7.2.5 Multiple testing

Some programming tools from Section 6.4 can be of use if we wish to perform multiple t-tests. For example, maybe we want to make pairwise comparisons of the sleeping times of all the different feeding behaviours in `msleep`: carnivores, herbivores, insectivores and omnivores. To find all possible pairs, we can use a nested for loop (Section 6.4.2). Note how the indices i and j that we loop over are set so that we only run the test for each combination once:

```r
library(MKinfer)

List the different feeding behaviours (ignoring NA's):
vores <- na.omit(unique(msleep$vore))
B <- length(vores)

Compute the number of pairs, and create an appropriately sized data frame to store the p-values in:
n_comb <- choose(B, 2)
p_values <- data.frame(group1 = vector("character", n_comb),
 group2 = vector("character", n_comb),
 p = vector("numeric", n_comb))

Loop over all pairs:
k <- 1 # Counter variable
for(i in 1:(B-1)) {
 for(j in (i+1):B) {
 # Run a t-test for the current pair:
 test_res <- perm.t.test(sleep_total ~ vore,
 data = subset(msleep, vore == vores[i] | vore == vores[j]))
 # Store the p-value:
 p_values[k,] <- c(vores[i], vores[j], test_res$p.value)
 # Increase the counter variable:
 k <- k + 1
 }
}
```

To view the p-values for each pairwise test, we can now run:

```r
p_values
```
When we run multiple tests, the risk for a type I error increases, to the point where we’re virtually guaranteed to get a significant result. We can reduce the risk of false positive results and adjust the p-values for multiplicity using for instance Bonferroni correction, Holm’s method (an improved version of the standard Bonferroni approach), or the Benjamini-Hochberg approach (which controls the false discovery rate and is useful if you for instance are screening a lot of variables for differences), using `p.adjust`:

```r
p.adjust(p_values$p, method = "bonferroni")
p.adjust(p_values$p, method = "holm")
p.adjust(p_values$p, method = "BH")
```

### 7.2.6 Multivariate testing with Hotelling’s $T^2$

If you are interested in comparing the means of several variables for two groups, using a multivariate test is sometimes a better option than running multiple univariate t-tests. The multivariate generalisation of the t-test, Hotelling’s $T^2$, is available through the `Hotelling` package:

```r
install.packages("Hotelling")
```

As an example, consider the `airquality` data. Let’s say that we want to test whether the mean ozone, solar radiation, wind speed, and temperature differ between June and July. We could use four separate t-tests to test this, but we could also use Hotelling’s $T^2$ to test the null hypothesis that the mean vector, i.e. the vector containing the four means, is the same for both months. The function used for this is `hotelling.test`:

```r
Subset the data:
airquality_t2 <- subset(airquality, Month == 6 | Month == 7)

Run the test under the assumption of normality:
library(Hotelling)
t2 <- hotelling.test(Ozone + Solar.R + Wind + Temp ~ Month,
 data = airquality_t2)
t2

Run a permutation test instead:
t2 <- hotelling.test(Ozone + Solar.R + Wind + Temp ~ Month,
 data = airquality_t2, perm = TRUE)
t2
```

### 7.2.7 Sample size computations for the t-test

In any study, it is important to collect enough data for the inference that we wish to make. If we want to use a t-test for a test about a mean or the difference of two
means, what constitutes "enough data" is usually measured by the power of the test. The sample is large enough when the test achieves high enough power. If we are comfortable assuming normality (and we may well be, especially as the main goal with sample size computations is to get a ballpark figure), we can use `power.t.test` to compute what power our test would achieve under different settings. For a two-sample test with unequal variances, we can use `power.welch.t.test` from `MKpower` instead. Both functions can be used to either find the sample size required for a certain power, or to find out what power will be obtained from a given sample size.

First of all, let’s install `MKpower`:

```r
install.packages("MKpower")
```

`power.t.test` and `power.welch.t.test` both use `delta` to denote the mean difference under the alternative hypothesis. In addition, we must supply the standard deviation `sd` of the distribution. Here are some examples:

```r
library(MKpower)

A one-sided one-sample test with 80% power:
power.t.test(power = 0.8, delta = 1, sd = 1, sig.level = 0.05,
 type = "one.sample", alternative = "one.sided")

A two-sided two-sample test with sample size n = 25 and equal # variances:
power.t.test(n = 25, delta = 1, sd = 1, sig.level = 0.05,
 type = "two.sample", alternative = "two.sided")

A one-sided two-sample test with 90% power and equal variances:
power.t.test(power = 0.9, delta = 1, sd = 0.5, sig.level = 0.01,
 type = "two.sample", alternative = "one.sided")

A one-sided two-sample test with 90% power and unequal variances:
power.welch.t.test(power = 0.9, delta = 1, sd1 = 0.5, sd2 = 1,
 sig.level = 0.01,
 type = "two.sample", alternative = "one.sided")
```

You may wonder how to choose `delta` and `sd`. If possible, it is good to base these numbers on a pilot study or related previous work. If no such data is available, your guess is as good as mine. For `delta`, some useful terminology comes from medical statistics, where the concept of clinical significance is used increasingly often. Make sure that `delta` is large enough to be clinically significant, that is, large enough to actually matter in practice.

If we have reason to believe that the data follows a non-normal distribution, another option is to use simulation to compute the sample size that will be required. We'll
do just that in Section 7.6.

**Exercise 7.6.** Return to the one-sided t-test that you performed in Exercise 7.5. Assume that delta is 0.5 (i.e. that the true mean is 6.5) and that the standard deviation is 2. How large does the sample size n have to be for the power of the test to be 95 % at a 5 % significance level? What is the power of the test when the sample size is \( n = 2,351 \)?

### 7.2.8 A Bayesian approach

The Bayesian paradigm differs in many ways from the frequentist approach that we use in the rest of this chapter. In Bayesian statistics, we first define a prior distribution for the parameters that we are interested in, representing our beliefs about them (for instance based on previous studies). Bayes’ theorem is then used to derive the posterior distribution, i.e. the distribution of the coefficients given the prior distribution and the data. Philosophically, this is very different from frequentist estimation, in which we don’t incorporate prior beliefs into our models (except for through which variables we include).

In many situations, we don’t have access to data that can be used to create an informative prior distribution. In such cases, we can use a so-called weakly informative prior instead. These act as a sort of “default priors”, representing large uncertainty about the values of the coefficients.

The *rstanarm* package contains methods for using Bayesian estimation to fit some common statistical models. It takes a while to install, but it is well worth it:

```r
install.packages("rstanarm")
```

To use a Bayesian model with a weakly informative prior to analyse the difference in sleeping time between herbivores and carnivores, we load *rstanarm* and use `stan_glm` in complete analogue with how we use `t.test`:

```r
library(rstanarm)
library(ggplot2)
m <- stan_glm(sleep_total ~ vore, data =
 subset(msleep, vore == "carni" | vore == "herbi"))
Print the estimates:
print(m)
```

There are two estimates here: an “intercept” (the average sleeping time for carnivores) and `voreherbi` (the difference between carnivores and herbivores). To plot the posterior distribution of the difference, we can use `plot`:

```r
plot(m, "dens", pars = c("voreherbi"))
```
To get a 95% credible interval (the Bayesian equivalent of a confidence interval) for the difference, we can use `posterior_interval` as follows:

```r
posterior_interval(m,
 pars = c("voreherbi"),
 prob = 0.95)
```

p-values are not a part of Bayesian statistics, so don’t expect any. It is however possible to perform a kind of Bayesian test of whether there is a difference by checking whether the credible interval for the difference contains 0. If not, there is evidence that there is a difference (Thulin, 2014c). In this case, 0 is contained in the interval, and there is no evidence of a difference.

In most cases, Bayesian estimation is done using Monte Carlo integration (specifically, a class of methods known as Markov Chain Monte Carlo, MCMC). To check that the model fitting has converged, we can use a measure called $\hat{R}$. It should be less than 1.1 if the fitting has converged:

```r
plot(m, "rhat")
```

If the model fitting hasn’t converged, you may need to increase the number of iterations of the MCMC algorithm. You can increase the number of iterations by adding the argument `iter` to `stan_glm` (the default is 2,000).

If you want to use a custom prior for your analysis, that is of course possible too. See `?priors` and `?stan_glm` for details about this, and about the default weakly informative prior.

### 7.3 Other common hypothesis tests and confidence intervals

There are thousands of statistical tests in addition to the t-test, and equally many methods for computing confidence intervals for different parameters. In this section we will have a look at some useful tools: the nonparametric Wilcoxon-Mann-Whitney test for location, tests for correlation, $\chi^2$-tests for contingency tables, and confidence intervals for proportions.

#### 7.3.1 Nonparametric tests of location

The Wilcoxon-Mann-Whitney test, `wilcox.test` in R, is a nonparametric alternative to the t-test that is based on ranks. `wilcox.test` can be used in complete analogue to `t.test`.

We can use two vectors as input:
7.3. OTHER COMMON HYPOTHESIS TESTS AND CONFIDENCE INTERVALS

library(ggplot2)
carnivores <- msleep[msleep$vore == "carni",]
herbivores <- msleep[msleep$vore == "herbi",]
wilcox.test(carnivores$sleep_total, herbivores$sleep_total)

Or use a formula:
wilcox.test(sleep_total ~ vore, data =
subset(msleep, vore == "carni" | vore == "herbi"))

7.3.2 Tests for correlation

To test the null hypothesis that two numerical variables are correlated, we can use cor.test. Let’s try it with sleeping times and brain weight, using the msleep data again:

library(ggplot2)
cor.test(msleep$sleep_total, msleep$brainwt,
use = "pairwise.complete")

The setting use = "pairwise.complete" means that NA values are ignored.
cor.test doesn’t have a data argument, so if you want to use it in a pipeline I recommend using the %$% pipe (Section 6.2) to pass on the vectors from your data frame:

library(magrittr)
msleep %$% cor.test(sleep_total, brainwt, use = "pairwise.complete")

The test we just performed uses the Pearson correlation coefficient as its test statistic. If you prefer, you can use the nonparametric Spearman and Kendall correlation coefficients in the test instead, by changing the value of method:

# Spearman test of correlation:
cor.test(msleep$sleep_total, msleep$brainwt,
use = "pairwise.complete",
method = "spearman")

These tests are all based on asymptotic approximations, which among other things causes the Pearson correlation test perform poorly for non-normal data. In Section 7.7 we will create a bootstrap version of the correlation test, which has better performance.

7.3.3 $\chi^2$-tests

$\chi^2$ (chi-squared) tests are most commonly used to test whether two categorical variables are independent. To use it, we must first construct a contingency table, i.e. a
table showing the counts for different combinations of categories, typically using table. Here is an example with the diamonds data from ggplot2:

```r
library(ggplot2)
table(diamonds$cut, diamonds$color)
```

The null hypothesis of our test is that the quality of the cut (cut) and the colour of the diamond (color) are independent, with the alternative being that they are dependent. We use `chisq.test` with the contingency table as input to run the $\chi^2$ test of independence:

```r
chisq.test(table(diamonds$cut, diamonds$color))
```

By default, `chisq.test` uses an asymptotic approximation of the p-value. For small sample sizes, it is almost often better to use permutation p-values by setting `simulate.p.value = TRUE` (but here the sample is not small, and so the computation of the permutation test will take a while):

```r
chisq.test(table(diamonds$cut, diamonds$color), simulate.p.value = TRUE)
```

As with `t.test`, we can use pipes to perform the test if we like:

```r
library(magrittr)
diamonds %>% table(cut, color) %>%
 chisq.test()
```

If both of the variables are binary, i.e. only take two values, the power of the test can be approximated using `power.prop.test`. Let’s say that we have two variables, $X$ and $Y$, taking the values 0 and 1. Assume that we collect $n$ observations with $X = 0$ and $n$ with $X = 1$. Furthermore, let $p_1$ be the probability that $Y = 1$ if $X = 0$ and $p_2$ be the probability that $Y = 1$ if $X = 1$. We can then use `power.prop.test` as follows:

```r
Assume that n = 50, p1 = 0.4 and p2 = 0.5 and compute the power:
power.prop.test(n = 50, p1 = 0.4, p2 = 0.5, sig.level = 0.05)

Assume that p1 = 0.4 and p2 = 0.5 and that we want 85 % power.
To compute the sample size required:
power.prop.test(power = 0.85, p1 = 0.4, p2 = 0.5, sig.level = 0.05)
```

### 7.3.4 Confidence intervals for proportions

The different t-test functions provide confidence intervals for means and differences of means. But what about proportions? The `binomCI` function in the `MKinfer` package allows us to compute confidence intervals for proportions from binomial experiments using a number of methods. The input is the number of “successes” $x$, the sample
Let’s say that we want to compute a confidence interval for the proportion of herbivore mammals that sleep for more than 7 hours a day.

```r
library(ggplot2)
herbivores <- msleep[msleep$Vore == "herbi",]

Compute the number of animals for which we know the sleeping time:
n <- sum(!is.na(herbivores$sleep_total))

Compute the number of "successes", i.e. the number of animals
that sleep for more than 7 hours:
x <- sum(herbivores$sleep_total > 7, na.rm = TRUE)
```

The estimated proportion is \( \frac{x}{n} \), which in this case is 0.625. We’d like to quantify the uncertainty in this estimate by computing a confidence interval. The standard Wald method, taught in most introductory courses, can be computed using:

```r
library(MKinfer)
binomCI(x, n, conf.level = 0.95, method = "wald")
```

Don’t do that though! The Wald interval is known to be severely flawed (Brown et al., 2001), and much better options are available. If the proportion can be expected to be close to 0 or 1, the Clopper-Pearson interval is recommended, and otherwise the Wilson interval is the best choice (Thulin, 2014a):

```r
binomCI(x, n, conf.level = 0.95, method = "clopper-pearson")
binomCI(x, n, conf.level = 0.95, method = "wilson")
```

An excellent Bayesian credible interval is the Jeffreys interval, which uses the weakly informative Jeffreys prior:

```r
binomCI(x, n, conf.level = 0.95, method = "jeffreys")
```

The `ssize.propCI` function in `MKpower` can be used to compute the sample size needed to obtain a confidence interval with a given width\(^3\). It relies on asymptotic formulas that are highly accurate, as you later on will verify in Exercise 7.17.

```r
library(MKpower)

Compute the sample size required to obtain an interval with
width 0.1 if the true proportion is 0.4:
ssize.propCI(prop = 0.4, width = 0.1, method = "wilson")
ssize.propCI(prop = 0.4, width = 0.1, method = "clopper-pearson")
```

---

\(^3\)Or rather, a given expected, or average, width. The width of the interval is a function of a random variable, and is therefore also random.
Exercise 7.7. The function binomDiffCI from MKinfer can be used to compute a confidence interval for the difference of two proportions. Using the msleep data, use it to compute a confidence interval for the difference between the proportion of herbivores that sleep for more than 7 hours a day and the proportion of carnivores that sleep for more than 7 hours a day.

7.4 Ethical issues in statistical inference

The use and misuse of statistical inference offer many ethical dilemmas. Some common issues related to ethics and good statistical practice are discussed below. As you read them and work with the associated exercises, consider consulting the ASA's ethical guidelines, presented in Section 3.11.

7.4.1 p-hacking and the file-drawer problem

Hypothesis tests are easy to misuse. If you run enough tests on your data, you are almost guaranteed to end up with significant results - either due to chance or because some of the null hypotheses you test are false. The process of trying lots of different tests (different methods, different hypotheses, different sub-groups) in search of significant results is known as p-hacking or data dredging. This greatly increases the risk of false findings, and can often produce misleading results.

Many practitioners inadvertently resort to p-hacking, by mixing exploratory data analysis and hypothesis testing, or by coming up with new hypotheses to test as they work with their data. This can be avoided by planning your analyses in advance, a practice that in fact is required in medical trials.

On the other end of the spectrum, there is the file-drawer problem, in which studies with negative (i.e. not statistically significant) results aren’t published or reported, but instead are stored in the researcher’s file-drawers. There are many reasons for this, one being that negative results usually are seen as less important and less worthy of spending time on. Simply put, negative results just aren’t news. If your study shows that eating kale every day significantly reduces the risk of cancer, then that is news, something that people are interested in learning, and something that can be published in a prestigious journal. However, if your study shows that a daily serving of kale has no impact on the risk of cancer, that’s not news, people aren’t really interested in hearing it, and it may prove difficult to publish your findings.

But what if 100 different researchers carried out the same study? If eating kale doesn’t affect the risk of cancer, then we can still expect 5 out of these researchers to get significant results (using a 5 % significance level). If only those researchers publish their results, that may give the impressions that there is strong evidence of
the cancer-preventing effect of kale backed up by several papers, even though the majority of studies actually indicated that there was no such effect.

Exercise 7.8. Discuss the following. You are helping a research team with statistical analysis of data that they have collected. You agree on five hypotheses to test. None of the tests turns out significant. Fearing that all their hard work won’t lead anywhere, your collaborators then ask you to carry out five new tests. Neither turns out significant. Your collaborators closely inspect the data and then ask you to carry out ten more tests, two of which are significant. The team wants to publish these significant results in a scientific journal. Should you agree to publish them? If so, what results should be published? Should you have put your foot down and told them not to run more tests? Does your answer depend on how long it took the research team to collect the data? What if the team won’t get funding for new projects unless they publish a paper soon? What if other research teams competing for the same grants do their analyses like this?

Exercise 7.9. Discuss the following. You are working for a company that is launching a new product, a hair-loss treatment. In a small study, the product worked for 19 out of 22 participants (86 %). You compute a 95 % Clopper-Pearson confidence interval (Section 7.3.4) for the proportion of successes and find that it is (0.65, 0.97). Based on this, the company wants to market the product as being 97 % effective. Is that acceptable to you? If not, how should it be marketed? Would your answer change if the product was something else (new running shoes that make you faster, a plastic film that protects smartphone screens from scratches, or contraceptives)? What if the company wanted to market it as being 86 % effective instead?

Exercise 7.10. Discuss the following. You have worked long and hard on a project. In the end, to see if the project was a success, you run a hypothesis test to check if two variables are correlated. You find that they are not (p = 0.15). However, if you remove three outliers, the two variables are significantly correlated (p = 0.03). What should you do? Does your answer change if you only have to remove one outlier to get a significant result? If you have to remove ten outliers? 100 outliers? What if the p-value is 0.051 before removing the outliers and 0.049 after removing the outliers?

Exercise 7.11. Discuss the following. You are analyzing data from an experiment to see if there is a difference between two treatments. You estimate\footnote{We’ll discuss methods for producing such estimates in Section 7.5.3.} that given the sample size and the expected difference in treatment effects, the power of the test that you’ll be using, i.e. the probability of rejecting the null hypothesis if it is false, is about 15 %. Should you carry out such an analysis? If not, how high does the power need to be for the analysis to be meaningful?
7.4.2 Reproducibility

An analysis is reproducible if it can be reproduced by someone else. By producing reproducible analyses, we make it easier for others to scrutinise our work. We also make all the steps in the data analysis transparent. This can act as a safeguard against data fabrication and data dredging.

In order to make an analysis reproducible, we need to provide at least two things. First, the data - all unedited data files in their original format. This also includes metadata with information required to understand the data (e.g. codebooks explaining variable names and codes used for categorical variables). Second, the computer code used to prepare and analyse the data. This includes any wrangling and preliminary testing performed on the data.

As long as we save our data files and code, data wrangling and analyses in R are inherently reproducible, in contrast to the same tasks carried out in menu-based software such as Excel. However, if reports are created using a word processor, there is always a risk that something will be lost along the way. Perhaps numbers are copied by hand (which may introduce errors), or maybe the wrong version of a figure is pasted into the document. R Markdown (Section 4.1) is a great tool for creating completely reproducible reports, as it allows you to integrate R code for data wrangling, analyses, and graphics in your report-writing. This reduces the risk of manually inserting errors, and allows you to share your work with others easily.

Exercise 7.12. Discuss the following. You are working on a study at a small-town hospital. The data involves biomarker measurements for a number of patients, and you show that patients with a sexually transmittable disease have elevated levels of some of the biomarkers. The data also includes information about the patients: their names, ages, ZIP codes, heights, and weights. The research team wants to publish your results and make the analysis reproducible. Is it ethically acceptable to share all your data? Can you make the analysis reproducible without violating patient confidentiality?

7.5 Evaluating statistical methods using simulation

An important use of simulation is in the evaluation of statistical methods. In this section, we will see how simulation can be used to compare the performance of two estimators, as well as the type I error rate and power of hypothesis tests.

7.5.1 Comparing estimators

Let’s say that we want to estimate the mean \( \mu \) of a normal distribution. We could come up with several different estimators for \( \mu \):
• The sample mean $\bar{x}$,
• The sample median $\tilde{x}$,
• The average of the largest and smallest value in the sample: $\frac{x_{\text{max}} + x_{\text{min}}}{2}$.

In this particular case (under normality), statistical theory tells us that the sample mean is the best estimator\(^5\). But how much better is it, really? And what if we didn’t know statistical theory - could we use simulation to find out which estimator to use?

To begin with, let’s write a function that computes the estimate $\frac{x_{\text{max}} + x_{\text{min}}}{2}$:

```r
max_min_avg <- function(x)
{
 return((max(x)+min(x))/2)
}
```

Next, we’ll generate some data from a $N(0, 1)$ distribution and compute the three estimates:

```r
x <- rnorm(25)
x_mean <- mean(x)
x_median <- median(x)
x_mma <- max_min_avg(x)
x_mean; x_median; x_mma
```

As you can see, the estimates given by the different approaches differ, so clearly the choice of estimator matters. We can’t determine which to use based on a single sample though. Instead, we typically compare the long-run properties of estimators, such as their bias and variance. The bias is the difference between the mean of the estimator and the parameter it seeks to estimate. An estimator is unbiased if its bias is 0, which is considered desirable at least in this setting. Among unbiased estimators, we prefer the one that has the smallest variance. So how can we use simulation to compute the bias and variance of estimators?

The key to using simulation here is to realise that $x_{\text{mean}}$ is an observation of the random variable $\bar{X} = \frac{1}{25}(X_1 + X_2 + \cdots + X_{25})$ where each $X_i$ is $N(0, 1)$-distributed. We can generate observations of $X_i$ (using `rnorm`), and can therefore also generate observations of $\bar{X}$. That means that we can obtain an arbitrarily large sample of observations of $\bar{X}$, which we can use to estimate its mean and variance. Here is an example:

```r
Set the parameters for the normal distribution:
mu <- 0
sigma <- 1
```

---

\(^{5}\)At least in terms of mean squared error.
We will generate 10,000 observations of the estimators:

B <- 1e4
res <- data.frame(x_mean = vector("numeric", B),
                  x_median = vector("numeric", B),
                  x_mma = vector("numeric", B))

# Start progress bar:
pbar <- txtProgressBar(min = 0, max = B, style = 3)

for(i in seq_along(res$x_mean))
{
  x <- rnorm(25, mu, sigma)
  res$x_mean[i] <- mean(x)
  res$x_median[i] <- median(x)
  res$x_mma[i] <- max_min_avg(x)

  # Update progress bar
  setTxtProgressBar(pbar, i)
}
close(pbar)

# Compare the estimators:
colMeans(res$mu) # Bias
apply(res, 2, var) # Variances

All three estimators appear to be unbiased (even if the simulation results aren’t exactly 0, they are very close). The sample mean has the smallest variance (and is therefore preferable!), followed by the median. The \( \frac{x_{\text{max}} + x_{\text{min}}}{2} \) estimator has the worst performance, which is unsurprising as it ignores all information not contained in the extremes of the dataset.

In Section 7.5.5 we’ll discuss how to choose the number of simulated samples to use in your simulations. For now, we’ll just note that the estimate of the estimators’ biases becomes more stable as the number of simulated samples increases, as can be seen from this plot, which utilises `cumsum`, described in Section 5.3.3:

# Compute estimates of the bias of the sample mean for each iteration:
res$iterations <- 1:B
res$x_mean_bias <- cumsum(res$x_mean)/1:B - mu

# Plot the results:
library(ggplot2)
ggplot(res, aes(iterations, x_mean_bias)) +
  geom_line() +
Exercise 7.13. Repeat the above simulation for different samples sizes \( n \) between 10 and 100. Plot the resulting variances as a function of \( n \).

Exercise 7.14. Repeat the simulation in 7.13, but with a \( t(3) \) distribution instead of the normal distribution. Which estimator is better in this case?

### 7.5.2 Type I error rate of hypothesis tests

In the same vein that we just compared estimators, we can also compare hypothesis tests or confidence intervals. Let’s have a look at the former, and evaluate how well the old-school two-sample t-test fares compared to a permutation t-test and the Wilcoxon-Mann-Whitney test.

For our first comparison, we will compare the type I error rate of the three tests, i.e. the risk of rejecting the null hypothesis if the null hypothesis is true. Nominally, this is the significance level \( \alpha \), which we set to be 0.05.

We write a function for such a simulation, to which we can pass the sizes \( n_1 \) and \( n_2 \) of the two samples, as well as a function \( \text{distr} \) to generate data:

```r
Load package used for permutation t-test:
library(MKinfer)

Create a function for running the simulation:
simulate_type_I <- function(n1, n2, distr, level = 0.05, B = 999,
 alternative = "two.sided", ...)
{
 # Create a data frame to store the results in:
p_values <- data.frame(p_t_test = vector("numeric", B),
 p_perm_t_test = vector("numeric", B),
 p_wilcoxon = vector("numeric", B))
```
CHAPTER 7. MODERN CLASSICAL STATISTICS

```r
Start progress bar:
pbar <- txtProgressBar(min = 0, max = B, style = 3)

for(i in 1:B)
{
 # Generate data:
 x <- distr(n1, ...)
 y <- distr(n2, ...)

 # Compute p-values:
 p_values[i, 1] <- t.test(x, y, alternative = alternative)$p.value
 p_values[i, 2] <- perm.t.test(x, y, alternative = alternative, R = 999)$perm.p.value
 p_values[i, 3] <- wilcox.test(x, y, alternative = alternative)$p.value

 # Update progress bar:
 setTxtProgressBar(pbar, i)
}
close(pbar)

Return the type I error rates:
return(colMeans(p_values < level))
```

First, let’s try it with normal data. The simulation takes a little while to run, primarily because of the permutation t-test, so you may want to take a short break while you wait.

`simulate_type_I(20, 20, rnorm, B = 9999)`

Next, let’s try it with a lognormal distribution, both with balanced and imbalanced sample sizes. Increasing the parameter \( \sigma \) (sdlog) increases the skewness of the lognormal distribution (i.e. makes it more asymmetric and therefore less similar to the normal distribution), so let’s try that to. In case you are in a rush, the results from my run of this code block can be found below it.

`simulate_type_I(20, 20, rlnorm, B = 9999, sdlog = 1)`
`simulate_type_I(20, 20, rlnorm, B = 9999, sdlog = 3)`
`simulate_type_I(20, 30, rlnorm, B = 9999, sdlog = 1)`
`simulate_type_I(20, 30, rlnorm, B = 9999, sdlog = 3)`
My results were:

```r
Normal distribution, n1 = n2 = 20:
 p_t_test p_perm_t_test p_wilcoxon
 0.04760476 0.04780478 0.04680468

Lognormal distribution, n1 = n2 = 20, sigma = 1:
 p_t_test p_perm_t_test p_wilcoxon
 0.03320332 0.04620462 0.04910491

Lognormal distribution, n1 = n2 = 20, sigma = 3:
 p_t_test p_perm_t_test p_wilcoxon
 0.00830083 0.05240524 0.04590459

Lognormal distribution, n1 = 20, n2 = 30, sigma = 1:
 p_t_test p_perm_t_test p_wilcoxon
 0.04080408 0.04970497 0.05300530

Lognormal distribution, n1 = 20, n2 = 30, sigma = 3:
 p_t_test p_perm_t_test p_wilcoxon
 0.01180118 0.04850485 0.05240524
```

What’s noticeable here is that the permutation t-test and the Wilcoxon-Mann-Whitney test have type I error rates that are close to the nominal 0.05 in all five scenarios, whereas the t-test has too low a type I error rate when the data comes from a lognormal distribution. This makes the test too conservative in this setting. Next, let’s compare the power of the tests.

### 7.5.3 Power of hypothesis tests

The power of a test is the probability of rejecting the null hypothesis if it is false. To estimate that, we need to generate data under the alternative hypothesis. For two-sample tests of the mean, the code is similar to what we used for the type I error simulation above, but we now need two functions for generating data - one for each group, because the groups differ under the alternative hypothesis. Bear in mind that the alternative hypothesis for the two-sample test is that the two distributions differ in location, so the two functions for generating data should reflect that.

```r
Load package used for permutation t-test:
library(MKinfer)

Create a function for running the simulation:
simulate_power <- function(n1, n2, distr1, distr2, level = 0.05,
 B = 999, alternative = "two.sided")
{
 # Create a data frame to store the results in:
```
Let’s try this out with lognormal data, where the difference in the log means is 1:

```r
Balanced sample sizes:
simulate_power(20, 20, function(n) { rlnorm(n, meanlog = 2, sdlog = 1) }, function(n) { rlnorm(n, meanlog = 1, sdlog = 1) }, B = 9999)
```

```r
Imbalanced sample sizes:
simulate_power(20, 30, function(n) { rlnorm(n, meanlog = 2, sdlog = 1) },
```
7.5. EVALUATING STATISTICAL METHODS USING SIMULATION

function(n) { rlnorm(n, 
               meanlog = 1, sdlog = 1), 
       B = 9999)

Here are the results from my runs:

<table>
<thead>
<tr>
<th></th>
<th>Balanced sample sizes:</th>
<th>Imbalanced sample sizes:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p_t_test</td>
<td>p_perm_t_test</td>
</tr>
<tr>
<td>Balanced sample sizes</td>
<td>0.6708671</td>
<td>0.7596760</td>
</tr>
</tbody>
</table>

Among the three, the Wilcoxon-Mann-Whitney test appears to be preferable for lognormal data, as it manages to obtain the correct type I error rate (unlike the old-school t-test) and has the highest power (although we would have to consider more scenarios, including different samples sizes, other differences of means, and different values of \( \sigma \) to say for sure!).

Remember that both our estimates of power and type I error rates are proportions, meaning that we can use binomial confidence intervals to quantify the uncertainty in the estimates from our simulation studies. Let’s do that for the lognormal setting with balanced sample sizes, using the results from my runs. The number of simulated samples were 9,999. For the t-test, the estimated type I error rate was 0.03320332, which corresponds to 0.03320332 \cdot 9,999 = 332 “successes”. Similarly, there were 6,708 “successes” in the power study. The confidence intervals become:

```
library(MKinfer)
binomCI(332, 9999, conf.level = 0.95, method = "clopper-pearson")
binomCI(6708, 9999, conf.level = 0.95, method = "wilson")
```

Exercise 7.15. Repeat the simulation study of type I error rate and power for the old school t-test, permutation t-test and the Wilcoxon-Mann-Whitney test with \( t(3) \)-distributed data. Which test has the best performance? How much lower is the type I error rate of the old-school t-test compared to the permutation t-test in the case of balanced sample sizes?

7.5.4 Power of some tests of location

The `MKpower` package contains functions for quickly performing power simulations for the old-school t-test and Wilcoxon-Mann-Whitney test in different settings. The
arguments \texttt{rx} and \texttt{ry} are used to pass functions used to generate the random numbers, in line with the \texttt{simulate_power} function that we created above.

For the t-test, we can use \texttt{sim.power.t.test}:

```r
library(MKpower)
sim.power.t.test(nx = 25, rx = rnorm, rx.H0 = rnorm,
 ny = 25, ry = function(x) { rnorm(x, mean = 0.8) },
 ry.H0 = rnorm)
```

For the Wilcoxon-Mann-Whitney test, we can use \texttt{sim.power.wilcox.test} for power simulations:

```r
library(MKpower)
sim.power.wilcox.test(nx = 10, rx = rnorm, rx.H0 = rnorm,
 ny = 15,
 ry = function(x) { rnorm(x, mean = 2) },
 ry.H0 = rnorm)
```

### 7.5.5 Some advice on simulation studies

There are two things that you need to decide when performing a simulation study:

- How many \textit{scenarios} to include, i.e. how many different settings for the model parameters to study, and
- How many \textit{iterations} to use, i.e. how many simulated samples to create for each scenario.

The number of scenarios is typically determined by what the purpose of the study is. If you only are looking to compare two tests for a particular sample size and a particular difference in means, then maybe you only need that one scenario. On the other hand, if you want to know which of the two tests that is preferable in general, or for different sample sizes, or for different types of distributions, then you need to cover more scenarios. In that case, the number of scenarios may well be determined by how much time you have available or how many you can fit into your report.

As for the number of iterations to run, that also partially comes down to computational power. If each iteration takes a long while to run, it may not be feasible to run tens of thousands of iterations (some advice for speeding up simulations by using parallelisation can be found in Section 10.2). In the best of all possible worlds, you have enough computational power available, and can choose the number of iterations freely. In such cases, it is often a good idea to use confidence intervals to quantify the uncertainty in your estimate of power, bias, or whatever it is that you are studying. For instance, the power of a test is estimated as the proportion of simulations in which the null hypothesis was rejected. This is a binomial experiment, and a confidence interval for the power can be obtained using the methods described in Section 7.3.4. Moreover, the \texttt{ssize.propCI} function described in said section can be used to
determine the number of simulations that you need to obtain a confidence interval that is short enough for you to feel that you have a good idea about the actual power of the test.

As an example, if a small pilot simulation indicates that the power is about 0.8 and you want a confidence interval with width 0.01, the number of simulations needed can be computed as follows:

```r
library(MKpower)
ssize.propCI(prop = 0.8, width = 0.01, method = "wilson")
```

In this case, you’d need 24,592 iterations to obtain the desired accuracy.

### 7.6 Sample size computations using simulation

Using simulation to compare statistical methods is a key tool in methodological statistical research and when assessing new methods. In applied statistics, a use of simulation that is just as important is sample size computations. In this section we’ll have a look at how simulations can be useful in determining sample sizes.

#### 7.6.1 Writing your own simulation

Suppose that we want to perform a correlation test and want to know how many observations we need to collect. As in the previous section, we can write a function to compute the power of the test:

```r
simulate_power <- function(n, distr, level = 0.05, B = 999, ...) {
 p_values <- vector("numeric", B)
 # Start progress bar:
 pbar <- txtProgressBar(min = 0, max = B, style = 3)
 for(i in 1:B) {
 # Generate bivariate data:
 x <- distr(n)
 # Compute p-values:
 p_values[i] <- cor.test(x[,1], x[,2], ...)$p.value
 # Update progress bar:
 setTxtProgressBar(pbar, i)
 }
}
```
close(pbar)
return(mean(p_values < level))
}

Under the null hypothesis of no correlation, the correlation coefficient is 0. We want to find a sample size that will give us 90% power at the 5% significance level, for different hypothesised correlations. We will generate data from a bivariate normal distribution, because it allows us to easily set the correlation of the generated data. Note that the mean and variance of the marginal normal distributions are nuisance variables, which can be set to 0 and 1, respectively, without loss of generality (because the correlation test is invariant under scaling and shifts in location).

First, let’s try our power simulation function:

library(MASS)  # Contains mvrnorm function for generating data
rho <- 0.5  # The correlation between the variables
mu <- c(0, 0)
Sigma <- matrix(c(1, rho, rho, 1), 2, 2)
simulate_power(50, function(n) { mvrnorm(n, mu, Sigma) }, B = 999)

To find the sample size we need, we will write a new function containing a while loop (see Section 6.4.5), that performs the simulation for increasing values of \( n \) until the test has achieved the desired power:

library(MASS)

power.cor.test <- function(n_start = 10, rho, n_incr = 5, power = 0.9, B = 999, ...)
{
  # Set parameters for the multivariate normal distribution:
  mu <- c(0, 0)
  Sigma <- matrix(c(1, rho, rho, 1), 2, 2)

  # Set initial values
  n <- n_start
  power_cor <- 0

  # Check power for different sample sizes:
  while(power_cor < power)
  {
    power_cor <- simulate_power(n,
      function(n) { mvrnorm(n, mu, Sigma) },
      B = B, ...
  )
7.6. SAMPLE SIZE COMPUTATIONS USING SIMULATION

```
cat("n =", n, " - Power:", power_cor,
 cat("\n")
)n <- n + n_incr

Return the result:
cat("\nWhen n =", n, "the power is", round(power_cor, 2), "\n")
return(n)
```

Let’s try it out with different settings:

```r
class = c("power.cor.test")
class = c("power.cor.test")
```

As expected, larger sample sizes are required to detect smaller correlations.

### 7.6.2 The Wilcoxon-Mann-Whitney test

The `sim.ssize.wilcox.test` in MKpower can be used to quickly perform sample size computations for the Wilcoxon-Mann-Whitney test, analogously to how we used `sim.power.wilcox.test` in Section 7.5.4:

```r
library(MKpower)
sim.ssize.wilcox.test(rx = rnorm, ry = function(x) rnorm(x, mean = 2),
 power = 0.8, n.min = 3, n.max = 10,
 step.size = 1)
```

**Exercise 7.16.** Modify the functions we used to compute the sample sizes for the Pearson correlation test to instead compute sample sizes for the Spearman correlation tests. For bivariate normal data, are the required sample sizes lower or higher than those of the Pearson correlation test?

**Exercise 7.17.** In Section 7.3.4 we had a look at some confidence intervals for proportions, and saw how `ssize.propCI` can be used to compute sample sizes for such intervals using asymptotic approximations. Write a function to compute the exact sample size needed for the Clopper-Pearson interval to achieve a desired expected (average) width. Compare your results to those from the asymptotic approximations. Are the approximations good enough to be useful?
7.7 Bootstrapping

The bootstrap can be used for many things, most notably for constructing confidence intervals and running hypothesis tests. These tend to perform better than traditional parametric methods, such as the old-school t-test and its associated confidence interval, when the distributional assumptions of the parametric methods aren’t met.

Confidence intervals and hypothesis tests are always based on a statistic, i.e. a quantity that we compute from the samples. The statistic could be the sample mean, a proportion, the Pearson correlation coefficient, or something else. In traditional parametric methods, we start by assuming that our data follows some distribution. For different reasons, including mathematical tractability, a common assumption is that the data is normally distributed. Under that assumption, we can then derive the distribution of the statistic that we are interested in analytically, like Gosset did for the t-test. That distribution can then be used to compute confidence intervals and p-values.

When using a bootstrap method, we follow the same steps, but use the observed data and simulation instead. Rather than making assumptions about the distribution, we use the empirical distribution of the data. Instead of analytically deriving a formula that describes the statistic’s distribution, we find a good approximation of the distribution of the statistic by using simulation. We can then use that distribution to obtain confidence intervals and p-values, just as in the parametric case.

The simulation step is important. We use a process known as resampling, where we repeatedly draw new observations with replacement from the original sample. We draw $B$ samples this way, each with the same size $n$ as the original sample. Each randomly drawn sample - called a bootstrap sample - will include different observations. Some observations from the original sample may appear more than once in a specific bootstrap sample, and some not at all. For each bootstrap sample, we compute the statistic in which we are interested. This gives us $B$ observations of this statistic, which together form what is called the bootstrap distribution of the statistic. I recommend using $B = 9,999$ or greater, but we’ll use smaller $B$ in some examples, to speed up the computations.

7.7.1 A general approach

The Pearson correlation test is known to be sensitive to deviations from normality. We can construct a more robust version of it using the bootstrap. To illustrate the procedure, we will use the `sleep_total` and `brainwt` variables from the `msleep` data. Here is the result from the traditional parametric Pearson correlation test:

```
library(ggplot2)
```

---

Well, sometimes we make assumptions about the distribution and use the bootstrap. This is known as the parametric bootstrap, and is discussed in Section 7.7.4.
To find the bootstrap distribution of the Pearson correlation coefficient, we can use resampling with a \texttt{for} loop (Section 6.4.1):

```r
Extract the data that we are interested in:
mydata <- na.omit(msleep[,c("sleep_total", "brainwt")])

Resampling using a for loop:
B <- 999 # Number of bootstrap samples
statistic <- vector("numeric", B)
for(i in 1:B) {
 # Draw row numbers for the bootstrap sample:
 row_numbers <- sample(1:nrow(mydata), nrow(mydata), replace = TRUE)
 # Obtain the bootstrap sample:
 sample <- mydata[row_numbers,]
 # Compute the statistic for the bootstrap sample:
 statistic[i] <- cor(sample[, 1], sample[, 2])
}

Plot the bootstrap distribution of the statistic:
ggplot(data.frame(statistic), aes(statistic)) +
 geom_histogram(colour = "black")
```

Because this is such a common procedure, there are R packages that let’s us do resampling without having to write a \texttt{for} loop. In the remainder of the section, we will use the \texttt{boot} package to draw bootstrap samples. It also contains convenience functions that allows us to get confidence intervals from the bootstrap distribution quickly. Let’s install it:

```r
install.packages("boot")
```

The most important function in this package is \texttt{boot}, which does the resampling. As input, it takes the original data, the number \(B\) of bootstrap samples to draw (called \texttt{R} here), and a function that computes the statistic of interest. This function should take the original data (\texttt{mydata} in our example above) and the row numbers of the sampled observation for a particular bootstrap sample (\texttt{row_numbers} in our example) as input.

For the correlation coefficient, the function that we input can look like this:
cor_boot <- function(data, row_numbers, method = "pearson")
{
    # Obtain the bootstrap sample:
    sample <- data[row_numbers,]

    # Compute and return the statistic for the bootstrap sample:
    return(cor(sample[, 1], sample[, 2], method = method))
}

To get the bootstrap distribution of the Pearson correlation coefficient for our data, we can now use boot as follows:

library(boot)

# Base solution:
boot_res <- boot(na.omit(msleep[, c("sleep_total", "brainwt")]),
                 cor_boot, 999)

Next, we can plot the bootstrap distribution of the statistic computed in cor_boot:

plot(boot_res)

If you prefer, you can of course use a pipeline for the resampling instead:

library(boot)
library(dplyr)

# With pipes:
msleep %>% select(sleep_total, brainwt) %>%
    drop_na %>%
    boot(cor_boot, 999) -> boot_res

### 7.7.2 Bootstrap confidence intervals

The next step is to use boot.ci to compute bootstrap confidence intervals. This is as simple as running:

boot.ci(boot_res)

Four intervals are presented: normal, basic, percentile and BCa. The details concerning how these are computed based on the bootstrap distribution are presented in Section 12.1. It is generally agreed that the percentile and BCa intervals are preferable to the normal and basic intervals; see e.g. Davison & Hinkley (1997) and Hall (1992); but which performs the best varies.

We also receive a warning message:
A fifth type of confidence interval, the studentised interval, requires bootstrap estimates of the standard error of the test statistic. These are obtained by running an inner bootstrap, i.e. by bootstrapping each bootstrap sample to get estimates of the variance of the test statistic. Let’s create a new function that does this, and then compute the bootstrap confidence intervals:

```r
Define the function for correlation
cor_boot_student <- function(data, i, method = "pearson") {
 sample <- data[i,]
 correlation <- cor(sample[, 1], sample[, 2], method = method)
 inner_boot <- boot(sample, cor_boot, 100)
 variance <- var(inner_boot$t)
 return(c(correlation, variance))
}

Load libraries
library(ggplot2)
library(boot)

Perform bootstrapping
boot_res <- boot(na.omit(msleep[,c("sleep_total", "brainwt")]),
 cor_boot_student,
 999)

Display bootstrap distribution
plot(boot_res)

Compute confidence intervals - including studentised
boot.ci(boot_res)
```

While theoretically appealing (Hall, 1992), studentised intervals can be a little erratic in practice. I prefer to use percentile and BCa intervals instead.

For two-sample problems, we need to make sure that the number of observations drawn from each sample is the same as in the original data. The `strata` argument in `boot` is used to achieve this. Let’s return to the example studied in Section 7.2, concerning the difference in how long carnivores and herbivores sleep. Let’s say that we want a confidence interval for the difference of two means, using the `msleep` data. The simplest approach is to create a Welch-type interval, where we allow the two populations to have different variances. We can then resample from each population
separately:

```r
Function that computes the mean for each group:
mean_diff_msleep <- function(data, i)
{
 sample1 <- subset(data[i, 1], data[i, 2] == "carni")
 sample2 <- subset(data[i, 1], data[i, 2] == "herbi")
 return(mean(sample1[[1]]) - mean(sample2[[1]]))
}
```

```r
library(ggplot2) # Load the data
library(boot) # Load bootstrap functions

Create the data set to resample from:
boot_data <- na.omit(subset(msleep,
 vore == "carni" | vore == "herbi")[,c("sleep_total", "vore")])

Do the resampling - we specify that we want resampling from two
populations by using strata:
boot_res <- boot(boot_data,
 mean_diff_msleep,
 999,
 strata = factor(boot_data$vore))

Compute confidence intervals:
boot.ci(boot_res, type = c("perc", "bca"))
```

Exercise 7.18. Let’s continue the example with a confidence interval for the difference in how long carnivores and herbivores sleep. How can you create a confidence interval under the assumption that the two groups have equal variances?

### 7.7.3 Bootstrap hypothesis tests

Writing code for bootstrap hypothesis tests can be a little tricky, because the resampling must be done under the null hypothesis. The process is greatly simplified by computing p-values using confidence interval inversion instead. This approach exploits the equivalence between confidence intervals and hypothesis tests, detailed in Section 12.2. It relies on the fact that:

- The p-value of the test for the parameter \( \theta \) is the smallest \( \alpha \) such that \( \theta \) is not contained in the corresponding \( 1 - \alpha \) confidence interval.
• For a test for the parameter $\theta$ with significance level $\alpha$, the set of values of $\theta$ that aren’t rejected by the test (when used as the null hypothesis) is a $1 - \alpha$ confidence interval for $\theta$.

Here is an example of how we can use a `while` loop (Section 6.4.5) for confidence interval inversion, in order to test the null hypothesis that the Pearson correlation between sleeping time and brain weight is $\rho = -0.2$. It uses the studentised confidence interval that we created in the previous section:

```r
Compute the studentised confidence interval:
cor_boot_student <- function(data, i, method = "pearson")
{
 sample <- data[i,]

 correlation <- cor(sample[, 1], sample[, 2], method = method)

 inner_boot <- boot(sample, cor_boot, 100)
 variance <- var(inner_boot$t)

 return(c(correlation, variance))
}

library(ggplot2)
library(boot)

boot_res <- boot(na.omit(msleep[,c("sleep_total", "brainwt")]),
 cor_boot_student, 999)

Now, a hypothesis test:
The null hypothesis:
rho_null <- -0.2

Set initial conditions:
in_interval <- TRUE
alpha <- 0

Find the lowest alpha for which rho_null is in the interval:
while(in_interval)
{
 # Increase alpha a small step:
 alpha <- alpha + 0.001

 # Compute the 1-alpha confidence interval, and extract
 # its bounds:
```
interval <- boot.ci(boot_res, 
  conf = 1 - alpha, 
  type = "stud")$student[4:5]

# Check if the null value for rho is greater than the lower 
# interval bound and smaller than the upper interval bound, 
# i.e. if it is contained in the interval: 

# The loop will finish as soon as it reaches a value of alpha such 
# that rho_null is not contained in the interval.

# Print the p-value:
alpha

The `boot.pval` package contains a function computing p-values through inversion of bootstrap confidence intervals. We can use it to obtain a bootstrap p-value without having to write a while loop. It works more or less analogously to `boot.ci`. The arguments to the `boot.pval` function is the `boot` object (`boot_res`), the type of interval to use ("stud"), and the value of the parameter under the null hypothesis (-0.2):

```
install.packages("boot.pval")
library(boot.pval)
boot.pval(boot_res, type = "stud", theta_null = -0.2)
```

Confidence interval inversion fails in spectacular ways for certain tests for parameters of discrete distributions (Thulin & Zwanzig, 2017), so be careful if you plan on using this approach with count data.

Exercise 7.19. With the data from Exercise 7.18, invert a percentile confidence interval to compute the p-value of the corresponding test of the null hypothesis that there is no difference in means. What are the results?

7.7.4 The parametric bootstrap

In some cases, we may be willing to make distributional assumptions about our data. We can then use the parametric bootstrap, in which the resampling is done not from the original sample, but the theorised distribution (with parameters estimated from the original sample). Here is an example for the bootstrap correlation test, where we assume a multivariate normal distribution for the data. Note that we no longer
include an index as an argument in the function `cor_boot`, because the bootstrap samples won’t be drawn directly from the original data:

```r
cor_boot <- function(data, method = "pearson")
{
 return(cor(data[, 1], data[, 2], method = method))
}
```

```r
library(MASS)
generate_data <- function(data, mle)
{
 return(mvrnorm(nrow(data), mle[[1]], mle[[2]]))
}
```

```r
library(ggplot2)
library(boot)
```

```r
filtered_data <- na.omit(msleep[,c("sleep_total", "brainwt")])
boot_res <- boot(filtered_data,
 cor_boot,
 R = 999,
 sim = "parametric",
 ran.gen = generate_data,
 mle = list(colMeans(filtered_data),
 cov(filtered_data)))
```

```r
Show bootstrap distribution:
plot(boot_res)

Compute bootstrap percentile confidence interval:
boot.ci(boot_res, type = "perc")
```

The BCa interval implemented in `boot.ci` is not valid for parametric bootstrap samples, so running `boot.ci(boot_res)` without specifying the interval `type` will render an error\(^7\). Percentile intervals work just fine, though.

### 7.8 Reporting statistical results

Carrying out a statistical analysis is only the first step. After that, you probably need to communicate your results to others: your boss, your colleagues, your clients, the public… This section contains some tips for how best to do that.

\(^7\)If you really need a BCa interval for the parametric bootstrap, you can find the formulas for it in Davison & Hinkley (1997).
7.8.1 What should you include?

When reporting your results, it should always be clear:

- How the data was collected,
- If, how, and why any observations were removed from the data prior to the analysis,
- What method was used for the analysis (including a reference unless it is a routine method),
- If any other analyses were performed/attempted on the data, and if you don’t report their results, why.

Let’s say that you’ve estimate some parameter, for instance the mean sleeping time of mammals, and want to report the results. The first thing to think about is that you shouldn’t include too many decimals: don’t give the mean with 5 decimals if sleeping times only were measured with one decimal.

BAD: The mean sleeping time of mammals was found to be 10.43373.

GOOD: The mean sleeping time of mammals was found to be 10.4.

It is common to see estimates reported with standard errors or standard deviations:

BAD: The mean sleeping time of mammals was found to be 10.3 (σ = 4.5).

or

BAD: The mean sleeping time of mammals was found to be 10.3 (standard error 0.49).

or

BAD: The mean sleeping time of mammals was found to be 10.3 ± 0.49.

Although common, this isn’t a very good practice. Standard errors/deviations are included to give some indication of the uncertainty of the estimate, but are very difficult to interpret. In most cases, they will probably cause the reader to either overestimate or underestimate the uncertainty in your estimate. A much better option is to present the estimate with a confidence interval, which quantifies the uncertainty in the estimate in an interpretable manner:

GOOD: The mean sleeping time of mammals was found to be 10.3 (95% percentile bootstrap confidence interval: 9.5-11.4).

Similarly, it is common to include error bars representing standard deviations and standard errors e.g. in bar charts. This questionable practice becomes even more troublesome because a lot of people fail to indicate what the error bars represent. If you wish to include error bars in your figures, they should always represent confidence intervals, unless you have a very strong reason for them to represent something else. In the latter case, make sure that you clearly explain what the error bars represent.
If the purpose of your study is to describe differences between groups, you should present a confidence interval for the difference between the groups, rather than one confidence interval (or error bar) for each group. It is possible for the individual confidence intervals to overlap even if there is a significant difference between the two groups, so reporting group-wise confidence intervals will only lead to confusion. If you are interested in the difference, then of course *the difference* is what you should report a confidence interval for.

**BAD:** There was no significant difference between the sleeping times of carnivores (mean 10.4, 95 % percentile bootstrap confidence interval: 8.4-12.5) and herbivores (mean 9.5, 95 % percentile bootstrap confidence interval: 8.1-12.6).

**GOOD:** There was no significant difference between the sleeping times of carnivores (mean 10.4) and herbivores (mean 9.5), with the 95 % percentile bootstrap confidence interval for the difference being (-1.8, 3.5).

### 7.8.2 Citing R packages

In statistical reports, it is often a good idea to specify what version of a software or a package that you used, for the sake of reproducibility (indeed, this is a requirement in some scientific journals). To get the citation information for the version of R that you are running, simply type `citation()`.

To get the version number, you can use `R.Version` as follows:

```r
citation()
R.Version()
```

To get the citation and version information for a package, use `citation` and `packageVersion` as follows:

```r
citation("ggplot2")
packageVersion("ggplot2")
```
Chapter 8

Regression models

Regression models, in which explanatory variables are used to model the behaviour of a response variable, is without a doubt the most commonly used class of models in the statistical toolbox. In this chapter, we will have a look at different types of regression models tailored to many different sorts of data and applications.

After reading this chapter, you will be able to use R to:

- Fit and evaluate linear and generalised linear models,
- Fit and evaluate mixed models,
- Fit survival analysis models,
- Analyse data with left-censored observations,
- Create matched samples.

8.1 Linear models

Being flexible enough to handle different types of data, yet simple enough to be useful and interpretable, linear models are among the most important tools in the statistics toolbox. In this section, we’ll discuss how to fit and evaluate linear models in R.

8.1.1 Fitting linear models

We had a quick glance at linear models in Section 3.7. There we used the mtcars data:

```
?mtcars
View(mtcars)
```

First, we plotted fuel consumption (mpg) against gross horsepower (hp):
library(ggplot2)
ggplot(mtcars, aes(hp, mpg)) + geom_point()

Given \( n \) observations of \( p \) explanatory variables (also known as predictors, covariates, independent variables, and features), the linear model is:

\[
y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip} + \epsilon_i, \quad i = 1, \ldots, n
\]

where \( \epsilon_i \) is a random error with mean 0, meaning that the model also can be written as:

\[
E(y_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip}, \quad i = 1, \ldots, n
\]

We fitted a linear model using \texttt{lm}, with \texttt{mpg} as the response variable and \texttt{hp} as the explanatory variable:

\[
m <- \texttt{lm(mpg} \sim \texttt{hp, data = mtcars)}\]

We added the fitted line to the scatterplot by using \texttt{geom_abline}:

\[
\begin{align*}
\texttt{# Check model coefficients:} \\
&\texttt{coef(m)} \\
\texttt{# Add regression line to plot:} \\
&\texttt{ggplot(mtcars, aes(hp, mpg)) +} \\
&\quad \texttt{geom_point()} + \\
&\quad \texttt{geom_abline(aes(intercept = coef(m)[1], slope = coef(m)[2]),} \\
&\quad \quad \texttt{colour = "red")}
\end{align*}
\]

We had a look at some diagnostic plots given by applying \texttt{plot} to our fitted model \( m \):

\[
\texttt{plot(m)}
\]

Finally, we added another variable, the car weight \( \texttt{wt} \), to the model:

\[
m <- \texttt{lm(mpg} \sim \texttt{hp + wt, data = mtcars)}\]

\[
\texttt{summary(m)}
\]

Next, we’ll look at what more R has to offer when it comes to regression. Before that though, it’s a good idea to do a quick exercise to make sure that you remember how to fit linear models.

\[
~
\]
Exercise 8.1. The sales-weather.csv data from Section 5.12 describes the weather in a region during the first quarter of 2020. Download the file from the book’s web page. Fit a linear regression model with TEMPERATURE as the response variable and SUN_HOURS as an explanatory variable. Plot the results. Is there a connection?

You’ll return to and expand this model in the next few exercises, so make sure to save your code.

Exercise 8.2. Fit a linear model to the mtcars data using the formula mpg ~ .. What happens? What is ~ . a shorthand for?

8.1.2 Interactions and polynomial terms

It seems plausible that there could be an interaction between gross horsepower and weight. We can include an interaction term by adding hp:wt to the formula:

```r
m <- lm(mpg ~ hp + wt + hp:wt, data = mtcars)
summary(m)
```

Alternatively, to include the main effects of hp and wt along with the interaction effect, we can use hp*wt as a shorthand for hp + wt + hp:wt to write the model formula more concisely:

```r
m <- lm(mpg ~ hp*wt, data = mtcars)
summary(m)
```

It is often recommended to centre the explanatory variables in regression models, i.e. to shift them so that they all have mean 0. There are a number of benefits to this: for instance that the intercept then can be interpreted as the expected value of the response variable when all explanatory variables are equal to their means, i.e. in an average case\(^1\). It can also reduce any multicollinearity in the data, particularly when including interactions or polynomial terms in the model. Finally, it can reduce problems with numerical instability that may arise due to floating point arithmetics. Note however, that there is no need to centre the response variable\(^2\).

Centring the explanatory variables can be done using `scale`:

```r
Create a new data frame, leaving the response variable mpg unchanged, while centring the explanatory variables:
mtcars_scaled <- data.frame(mpg = mtcars[,1],
 scale(mtcars[,-1], center = TRUE, scale = FALSE))
```

---

\(^1\)If the variables aren’t centred, the intercept is the expected value of the response variable when all explanatory variables are 0. This isn’t always realistic or meaningful.

\(^2\)On the contrary, doing so will usually only serve to make interpretation more difficult.
If we wish to add a polynomial term to the model, we can do so by wrapping the polynomial in \( I() \). For instance, to add a quadratic effect in the form of the square weight of a vehicle to the model, we’d use:

\[
\text{m} \leftarrow \text{lm} (\text{mpg} \sim \text{hp} \times \text{wt}, \text{data} = \text{mtcars_scaled})
\]

\[
\text{summary} (\text{m})
\]

### 8.1.3 Dummy variables

Categorical variables can be included in regression models by using *dummy variables*. A dummy variable takes the values 0 and 1, indicating that an observation either belongs to a category (1) or not (0). If the original categorical variable has more than two categories, \( c \) categories, say, the number of dummy variables included in the regression model should be \( c - 1 \) (with the last category corresponding to all dummy variables being 0). R does this automatically for us if we include a *factor* variable in a regression model:

\[
\# \text{ Make cyl a categorical variable:}
\text{mtcars}\$\text{cyl} \leftarrow \text{factor(mtcars}\$\text{cyl})
\]

\[
\text{m} \leftarrow \text{lm} (\text{mpg} \sim \text{hp} \times \text{wt} + \text{cyl}, \text{data} = \text{mtcars})
\]

\[
\text{summary} (\text{m})
\]

Note how only two categories, 6 cylinders and 8 cylinders, are shown in the summary table. The third category, 4 cylinders, corresponds to both those dummy variables being 0. Therefore, the coefficient estimates for cy16 and cy18 are relative to the remaining *reference category* cy14. For instance, compared to cy14 cars, cy16 cars have a higher fuel consumption, with their mpg being 1.26 lower.

We can control which category is used as the reference category by setting the order of the *factor* variable, as in Section 5.4. The first *factor* level is always used as the reference, so if for instance we want to use cy16 as our reference category, we’d do the following:

\[
\# \text{ Make cyl a categorical variable with cy16 as reference variable:}
\text{mtcars}\$\text{cyl} \leftarrow \text{factor(mtcars}\$\text{cyl}, \text{levels} = \text{c}(6, 4, 8))
\]

\[
\text{m} \leftarrow \text{lm} (\text{mpg} \sim \text{hp} \times \text{wt} + \text{cyl}, \text{data} = \text{mtcars})
\]

\[
\text{summary} (\text{m})
\]

Dummy variables are frequently used for modelling differences between different
8.1. LINEAR MODELS

Considering only the dummy variable corresponds to using different intercepts for different groups. If we also include an interaction with the dummy variable, we can get different slopes for different groups. Consider the model

$$E(y_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_{12} x_{i1} x_{i2}, \quad i = 1, \ldots, n$$

where $x_1$ is numeric and $x_2$ is a dummy variable. Then the intercept and slope changes depending on the value of $x_2$ as follows:

$$E(y_i) = \beta_0 + \beta_1 x_{i1}, \quad \text{if } x_2 = 0,$$

$$E(y_i) = (\beta_0 + \beta_2) + (\beta_1 + \beta_{12}) x_{i1}, \quad \text{if } x_2 = 1.$$ 

This yields a model where the intercept and slope differs between the two groups that $x_2$ represents.

Exercise 8.3. Return to the weather model from Exercise 8.1. Create a dummy variable for precipitation (zero precipitation or non-zero precipitation) and add it to your model. Also include an interaction term between the precipitation dummy and the number of sun hours. Are any of the coefficients significantly non-zero?

8.1.4 Model diagnostics

There are a few different ways in which we can plot the fitted model. First, we can of course make a scatterplot of the data and add a curve showing the fitted values corresponding to the different points. These can be obtained by running `predict(m)` with our fitted model `m`.

```r
Fit two models:
m1 <- lm(mpg ~ hp + wt, data = mtcars) # Simple model
m2 <- lm(mpg ~ hp*wt + cyl, data = mtcars) # Complex model

Create data frames with fitted values:
m1_pred <- data.frame(hp = mtcars$hp, mpg_pred = predict(m1))
m2_pred <- data.frame(hp = mtcars$hp, mpg_pred = predict(m2))

Plot fitted values:
library(ggplot2)
ggplot(mtcars, aes(hp, mpg)) +
 geom_point() +
 geom_line(data = m1_pred, aes(x = hp, y = mpg_pred),
 colour = "red") +
```
Linear models are fitted and analysed using a number of assumptions, most of which are assessed by looking at plots of the model residuals, \( y_i - \hat{y}_i \), where \( \hat{y}_i \) is the fitted value for observation \( i \). Some important assumptions are:

- **The model is linear in the parameters**: we check this by looking for non-linear patterns in the residuals, or in the plot of observed against fitted values.
- **The observations are independent**: which can be difficult to assess visually. We'll look at models that are designed to handle correlated observations in Sections 8.4 and 9.6.
- **Homoscedasticity**: that the random errors all have the same variance. We check this by looking for non-constant variance in the residuals. The opposite of homoscedasticity is heteroscedasticity.
- **Normally distributed random errors**: this assumption is important if we want to use the traditional parametric p-values, confidence intervals and prediction intervals. If we use permutation p-values or bootstrap intervals (as we will later in this chapter), we no longer need this assumption.

Additionally, residual plots can be used to find influential points that (possibly) have a large impact on the model coefficients (influence is measured using Cook’s distance and potential influence using leverage). We’ve already seen that we can use `plot(m)` to create some diagnostic plots. To get more and better-looking plots, we can use the `autoplot` function for `lm` objects from the `ggfortify` package:

```r
library(ggfortify)
autoplot(m1, which = 1:6, ncol = 2, label.size = 3)
```

In each of the plots, we look for the following:

- Residuals versus fitted: look for patterns that can indicate non-linearity, e.g. that the residuals all are high in some areas and low in others. The blue line is there to aid the eye - it should ideally be relatively close to a
8.1. LINEAR MODELS

straight line (in this case, it isn’t perfectly straight, which could indicate a mild non-linearity).

- Normal Q-Q: see if the points follow the line, which would indicate that the residuals (which we for this purpose can think of as estimates of the random errors) follow a normal distribution.

- Scale-Location: similar to the residuals versus fitted plot, this plot shows whether the residuals are evenly spread for different values of the fitted values. Look for patterns in how much the residuals vary - if they e.g. vary more for large fitted values, then that is a sign of heteroscedasticity. A horizontal blue line is a sign of homoscedasticity.

- Cook’s distance: look for points with high values. A commonly-cited rule-of-thumb (Cook & Weisberg, 1982) says that values above 1 indicate points with a high influence.

- Residuals versus leverage: look for points with a high residual and high leverage. Observations with a high residual but low leverage deviate from the fitted model but don’t affect it much. Observations with a high residual and a high leverage likely have a strong influence on the model fit, meaning that the fitted model could be quite different if these points were removed from the dataset.

- Cook’s distance versus leverage: look for observations with a high Cook’s distance and a high leverage, which are likely to have a strong influence on the model fit.

A formal test for heteroscedasticity, the Breusch-Pagan test, is available in the car package as a complement to graphical inspection. A low p-value indicates statistical evidence for heteroscedasticity. To run the test, we use `ncvTest` (where “ncv” stands for non-constant variance):

```r
install.packages("car")
library(car)
ncvTest(m1)
```

A common problem in linear regression models is multicollinearity, i.e. explanatory variables that are strongly correlated. Multicollinearity can cause your $\beta$ coefficients and p-values to change greatly if there are small changes in the data, rendering them unreliable. To check if you have multicollinearity in your data, you can create a scatterplot matrix of your explanatory variables, as in Section 4.8.1:

```r
library(GGally)
ggpairs(mtcars[, -1])
```

In this case, there are some highly correlated pairs, hp and disp among them. As a numerical measure of collinearity, we can use the generalised variance inflation factor (GVIF), given by the `vif` function in the car package:

```r
library(car)
m <- lm(mpg ~ ., data = mtcars)
```
A high GVIF indicates that a variable is highly correlated with other explanatory variables in the dataset. Recommendations for what a “high GVIF” is varies, from 2.5 to 10 or more.

You can mitigate problems related to multicollinearity by:

- Removing one or more of the correlated variables from the model (because they are strongly correlated, they measure almost the same thing anyway!),
- Centring your explanatory variables (particularly if you include polynomial terms),
- Using a regularised regression model (which we’ll do in Section 9.4).

Exercise 8.4. Below are two simulated datasets. One exhibits a nonlinear dependence between the variables, and the other exhibits heteroscedasticity. Fit a model with \( y \) as the response variable and \( x \) as the explanatory variable for each dataset, and make some residual plots. Which dataset suffers from which problem?

```r
exdata1 <- data.frame(
 x = c(2.99, 5.01, 8.84, 6.18, 8.57, 8.23, 8.48, 0.04, 6.80, 7.94, 6.30, 4.21, 3.61, 7.08, 3.50, 9.05, 1.06, 0.65, 8.66, 0.08, 1.48, 2.96, 2.54, 4.45),
 y = c(5.25, -0.80, 4.38, -0.75, 9.93, 13.79, 9.75, 24.65, 6.84, 11.95, 12.24, 7.97, -1.20, -1.76, 10.36, 1.17, 15.41, 15.83, 18.78, 12.75, 24.17, 12.49, 4.58, 6.76, -2.92))

exdata2 <- data.frame(
 x = c(5.70, 8.03, 8.86, 0.82, 1.23, 2.96, 0.13, 8.53, 8.18, 6.88, 4.02, 9.11, 0.19, 6.91, 0.34, 4.19, 0.25, 9.72, 9.83, 6.77, 4.40, 4.70, 6.03, 5.87, 7.49),
 y = c(21.66, 26.23, 19.82, 2.46, 2.83, 8.86, 0.25, 16.08, 17.67, 24.86, 8.19, 28.45, 0.52, 19.88, 0.71, 12.19, 0.64, 25.29, 26.72, 18.06, 10.70, 8.27, 15.49, 15.58, 19.17))
```

Exercise 8.5. We continue our investigation of the weather models from Exercises 8.1 and 8.3.

1. Plot the observed values against the fitted values for the two models that you’ve fitted. Does either model seem to have a better fit?
2. Create residual plots for the second model from Exercise 8.3. Are there any influential points? Any patterns? Any signs of heteroscedasticity?

### 8.1.5 Transformations

If your data displays signs of heteroscedasticity or non-normal residuals, you can sometimes use a Box-Cox transformation (Box & Cox, 1964) to mitigate those problems. The Box-Cox transformation is applied to your dependent variable \( y \). What it looks like is determined by a parameter \( \lambda \). The transformation is defined as \( \frac{y^\lambda - 1}{\lambda} \) if \( \lambda \neq 0 \) and \( \ln(y) \) if \( \lambda = 0 \). \( \lambda = 1 \) corresponds to no transformation at all. The `boxcox` function in `MASS` is useful for finding an appropriate choice of \( \lambda \). Choose a \( \lambda \) that is close to the peak (inside the interval indicated by the outer dotted lines) of the curve plotted by `boxcox`:

```r
m <- lm(mpg ~ hp + wt, data = mtcars)
library(MASS)
boxcox(m)
```

In this case, the curve indicates that \( \lambda = 0 \), which corresponds to a log-transformation, could be a good choice. Let’s give it a go:

```r
mtcars$logmpg <- log(mtcars$mpg)
m_bc <- lm(logmpg ~ hp + wt, data = mtcars)
summary(m_bc)
```

The model fit seems to have improved after the transformation. The downside is that we now are modelling the log-mpg rather than mpg, which make the model coefficients a little difficult to interpret.

```r
library(ggfortify)
autoplot(m_bc, which = 1:6, ncol = 2, label.size = 3)
```

**Exercise 8.6.** Run `boxcox` with your model from Exercise 8.3. Does it indicate that a transformation can be useful for your model?

### 8.1.6 Alternatives to `lm`

Non-normal regression errors can sometimes be an indication that you need to transform your data, that your model is missing an important explanatory variable, that there are interaction effects that aren’t accounted for, or that the relationship between the variables is non-linear. But sometimes, you get non-normal errors simply because the errors are non-normal.
The p-values reported by `summary` are computed under the assumption of normally distributed regression errors, and can be sensitive to deviations from normality. An alternative is to use the `lmp` function from the `lmPerm` package, which provides permutation test p-values instead. This doesn’t affect the model fitting in any way - the only difference is how the p-values are computed. Moreover, the syntax for `lmp` is identical to that of `lm`:

```
First, install lmPerm:
install.packages("lmPerm")

Get summary table with permutation p-values:
library(lmPerm)
m <- lmp(mpg ~ hp + wt, data = mtcars)
summary(m)
```

In some cases, you need to change the arguments of `lmp` to get reliable p-values. We’ll have a look at that in Exercise 8.12. Relatedly, in Section 8.1.7 we’ll see how to construct bootstrap confidence intervals for the parameter estimates.

Another option that does affect the model fitting is to use a robust regression model based on M-estimators. Such models tend to be less sensitive to outliers, and can be useful if you are concerned about the influence of deviating points. The `rlm` function in `MASS` is used for this. As was the case for `lmp`, the syntax for `rlm` is identical to that of `lm`:

```
library(MASS)
m <- rlm(mpg ~ hp + wt, data = mtcars)
summary(m)
```

Another option is to use Bayesian estimation, which we’ll discuss in Section 8.1.13.

```
~
```

**Exercise 8.7.** Refit your model from Exercise 8.3 using `lmp`. Are the two main effects still significant?

### 8.1.7 Bootstrap confidence intervals for regression coefficients

Assuming normality, we can obtain parametric confidence intervals for the model coefficients using `confint`:

```
m <- lm(mpg ~ hp + wt, data = mtcars)
confint(m)
```

I usually prefer to use bootstrap confidence intervals, which we can obtain using `boot`
and \texttt{boot.ci}, as we’ll do next. Note that the only random part in the linear model
\[ y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip} + \epsilon_i, \quad i = 1, \ldots, n \]
is the error term $\epsilon_i$. In most cases, it is therefore this term (and this term only) that we wish to resample. The explanatory variables should remain constant throughout the resampling process; the inference is conditioned on the values of the explanatory variables.

To achieve this, we’ll resample from the model residuals, and add those to the values predicted by the fitted function, which creates new bootstrap values of the response variable. We’ll then fit a linear model to these values, from which we obtain observations from the bootstrap distribution of the model coefficients.

It turns out that the bootstrap performs better if we resample not from the original residuals $e_1, \ldots, e_n$, but from scaled and centred residuals $r_i - \bar{r}$, where each $r_i$ is a scaled version of residual $e_i$, scaled by the leverage $h_i$:
\[ r_i = \frac{e_i}{\sqrt{1 - h_i}}, \]
see Chapter 6 of Davison & Hinkley (1997) for details. The leverages can be computed using \texttt{lm.influence}.

We implement this procedure in the code below (and will then have a look at convenience functions that help us achieve the same thing more easily). It makes use of \texttt{formula}, which can be used to extract the model formula from regression models:

```r
library(boot)

coefficients <- function(formula, data, i, predictions, residuals) {
 # Create the bootstrap value of response variable by
 # adding a randomly drawn scaled residual to the value of
 # the fitted function for each observation:
 data[, all.vars(formula)[1]] <- predictions + residuals[i]

 # Fit a new model with the bootstrap value of the response
 # variable and the original explanatory variables:
 m <- lm(formula, data = data)
 return(coef(m))
}

Fit the linear model:
m <- lm(mpg ~ hp + wt, data = mtcars)

Compute scaled and centred residuals:
res <- residuals(m)/sqrt(1 - lm.influence(m)$hat)
```
res <- res - mean(res)

# Run the bootstrap, extracting the model formula and the
# fitted function from the model m:
boot_res <- boot(data = mtcars, statistic = coefficients,
    R = 999, formula = formula(m),
    predictions = predict(m),
    residuals = res)

# Compute 95 % confidence intervals:
boot.ci(boot_res, type = "perc", index = 1) # Intercept
boot.ci(boot_res, type = "perc", index = 2) # hp
boot.ci(boot_res, type = "perc", index = 3) # wt

The argument index in boot.ci should be the row number of the parameter in the
table given by summary. The intercept is on the first row, and so its index is 1, hp
is on the second row and its index is 2, and so on.

Clearly, the above code is a little unwieldy. Fortunately, the car package contains
a function called Boot that can be used to bootstrap regression models in the exact
same way:

library(car)

boot_res <- Boot(m, method = "residual", R = 9999)

# Compute 95 % confidence intervals:
confint(boot_res, type = "perc")

Finally, the most convenient approach is to use boot_summary from the boot.pval
package. It provides a data frame with estimates, bootstrap confidence intervals,
and bootstrap p-values (computed using interval inversion) for the model coefficients.
The arguments specify what interval type and resampling strategy to use (more on
the latter in Exercise 8.9):

library(boot.pval)

boot_summary(m, type = "perc", method = "residual", R = 9999)

~

Exercise 8.8. Refit your model from Exercise 8.3 using a robust regression estimator
with rlm. Compute confidence intervals for the coefficients of the robust regression
model.
8.1. LINEAR MODELS

Exercise 8.9. In an alternative bootstrap scheme for regression models, often referred to as case resampling, the observations (or cases) \((y_i, x_{i1}, \ldots, x_{ip})\) are resampled instead of the residuals. This approach can be applied when the explanatory variables can be treated as being random (but measured without error) rather than fixed. It can also be useful for models with heteroscedasticity, as it doesn’t rely on assumptions about constant variance (which, on the other hand, makes it less efficient if the errors actually are homoscedastic).

Read the documentation for `boot_summary` to see how you can compute confidence intervals for the coefficients in the model `m <- lm(mpg ~ hp + wt, data = mtcars)` using case resampling. Do they differ substantially from those obtained using residual resampling in this case?

8.1.8 Alternative summaries with broom

The `broom` package contains some useful functions when working with linear models (and many other common models), which allow us to get various summaries of the model fit in useful formats. Let’s install it:

```r
install.packages("broom")
```

A model fitted with `m` is stored as a list with lots of elements:

```r
m <- lm(mpg ~ hp + wt, data = mtcars)
str(m)
```

How can we access the information about the model? For instance, we may want to get the summary table from `summary`, but as a data frame rather than as printed text. Here are two ways of doing this, using `summary` and the `tidy` function from `broom`:

```r
Using base R:
summary(m)$coefficients

Using broom:
library(broom)
tidy(m)
```

tidy is the better option if you want to retrieve the table as part of a pipeline. For instance, if you want to adjust the p-values for multiplicity using Bonferroni correction (Section 7.2.5), you could do as follows:

```r
library(magrittr)
mtcars %>%
 lm(mpg ~ hp + wt, data = .) %>%
 tidy() %>%
p.adjust(p.value, method = "bonferroni")
```
If you prefer bootstrap p-values, you can use `boot_summary` from `boot.pval` similarly. That function also includes an argument for adjusting the p-values for multiplicity:

```r
library(boot.pval)
lm(mpg ~ hp + wt, data = mtcars) %>%
 boot_summary(adjust.method = "bonferroni")
```

Another useful function in `broom` is `glance`, which lets us get some summary statistics about the model:

```r
glance(m)
```

Finally, `augment` can be used to add predicted values, residuals, and Cook’s distances to the dataset used for fitting the model, which of course can be very useful for model diagnostics:

```r
To get the data frame with predictions and residuals added:
augment(m)

To plot the observed values against the fitted values:
library(ggplot2)
mtcars %>%
lm(mpg ~ hp + wt, data = .) %>%
augment() %>%
ggplot(aes(.fitted, mpg)) +
 geom_point() +
 xlab("Fitted values") + ylab("Observed values")
```

### 8.1.9 Variable selection

A common question when working with linear models is what variables to include in your model. Common practices for variable selection include stepwise regression methods, where variables are added to or removed from the model depending on p-values, $R^2$ values, or information criteria like AIC or BIC.

**Don’t ever do this if your main interest is p-values.** Stepwise regression increases the risk of type I errors, renders the p-values of your final model invalid, and can lead to over-fitting; see e.g. Smith (2018). Instead, you should let your research hypothesis guide your choice of variables, or base your choice on a pilot study.

If your main interest is prediction, then that is a completely different story. For predictive models, it is usually recommended that variable selection and model fitting should be done simultaneously. This can be done using regularised regression models, to which Section 9.4 is devoted.
8.1. LINEAR MODELS

8.1.10 Prediction

An important use of linear models is prediction. In R, this is done using `predict`. By providing a fitted model and a new dataset, we can get predictions.

Let’s use one of the models that we fitted to the `mtcars` data to make predictions for two cars that aren’t from the 1970’s. Below, we create a data frame with data for a 2009 Volvo XC90 D3 AWD (with a fuel consumption of 29 mpg) and a 2019 Ferrari Roma (15.4 mpg):

```r
new_cars <- data.frame(
 hp = c(161, 612),
 wt = c(4.473, 3.462),
 row.names = c("Volvo XC90", "Ferrari Roma"))
```

To get the model predictions for these new cars, we run the following:

```r
predict(m, new_cars)
```

`predict` also lets us obtain prediction intervals for our prediction, under the assumption of normality. To get 90% prediction intervals, we add `interval = "prediction"` and `level = 0.9`:

```r
m <- lm(mpg ~ hp + wt, data = mtcars)
predict(m, new_cars,
 interval = "prediction",
 level = 0.9)
```

If we were using a transformed $y$-variable, we’d probably have to transform the predictions back to the original scale for them to be useful:

```r
mtcars$logmpg <- log(mtcars$mpg)
m_bc <- lm(logmpg ~ hp + wt, data = mtcars)
preds <- predict(m_bc, new_cars,
 interval = "prediction",
 level = 0.9)
```

### Predictions for log-mpg:

```r
preds
def
```

### Transform back to original scale:

```r
exp(preds)
```

The `lmp` function that we used to compute permutation p-values does not offer confidence intervals. We can however compute bootstrap prediction intervals using the code below. Prediction intervals try to capture two sources of uncertainty:

---

3Prediction intervals provide interval estimates for the new observations. They incorporate both the uncertainty associated with our model estimates, and the fact that the new observation is likely to deviate slightly from its expected value.
• *Model uncertainty*, which we will capture by resampling the data and make predictions for the expected value of the observation,

• *Random noise*, i.e. that almost all observations deviate from their expected value. We will capture this by resampling residuals from the fitted bootstrap models.

Consequently, the value that we generate in each bootstrap replication will be the sum of a prediction and a resampled residual (see Davison & Hinkley (1997), Section 6.3, for further details):

```r
boot_pred <- function(data, new_data, model, i, formula, predictions, residuals){
 # Resample residuals and fit new model:
 data[,all.vars(formula)[1]] <- predictions + residuals[i]
 m_boot <- lm(formula, data = data)

 # We use predict to get an estimate of the
 # expectation of new observations, and then
 # add resampled residuals to also include the
 # natural variation around the expectation:
 predict(m_boot, newdata = new_data) +
 sample(residuals, nrow(new_data))
}
library(boot)

m <- lm(mpg ~ hp + wt, data = mtcars)

Compute scaled and centred residuals:
res <- residuals(m)/sqrt(1 - lm.influence(m)$hat)
res <- res - mean(res)

boot_res <- boot(data = m$model,
 statistic = boot_pred,
 R = 999,
 model = m,
 new_data = new_cars,
 formula = formula(m),
 predictions = predict(m),
 residuals = res)

90 % bootstrap prediction intervals:
boot.ci(boot_res, type = "perc", index = 1, conf = 0.9) # Volvo
boot.ci(boot_res, type = "perc", index = 2, conf = 0.9) # Ferrari
```
8.1. LINEAR MODELS

Exercise 8.10. Use your model from Exercise 8.3 to compute a bootstrap prediction interval for the temperature on a day with precipitation but no sun hours.

8.1.11 Prediction for multiple datasets

In certain cases, we wish to fit different models to different subsets of the data. Functionals like `apply` and `map` (Section 6.5) are handy when you want to fit several models at once. Below is an example of how we can use `split` (Section 5.2.1) and tools from the `purrr` package (Section 6.5.3) to fit the models simultaneously, as well as for computing the fitted values in a single line of code:

```r
Split the dataset into three groups depending on the number of cylinders:
library(magrittr)
mtcars_by_cyl <- mtcars %>% split(.,$cyl)

Fit a linear model to each subgroup:
library(purrr)
models <- mtcars_by_cyl %>% map(~ lm(mpg ~ hp + wt, data = .))

Compute the fitted values for each model:
map2(models, mtcars_by_cyl, predict)
```

We’ll make use of this approach when we study linear mixed models in Section 8.4.

8.1.12 ANOVA

Linear models are also used for analysis of variance (ANOVA) models to test whether there are differences among the means of different groups. We’ll use the `mtcars` data to give some examples of this. Let’s say that we want to investigate whether the mean fuel consumption (`mpg`) of cars differs depending on the number of cylinders (`cyl`), and that we want to include the type of transmission (`am`) as a blocking variable.

To get an ANOVA table for this problem, we must first convert the explanatory variables to `factor` variables, as the variables in `mtcars` all numeric (despite some of them being categorical). We can then use `aov` to fit the model, and then `summary`:

```r
Convert variables to factors:
mtcars$cyl <- factor(mtcars$cyl)
mtcars$am <- factor(mtcars$am)

Fit model and print ANOVA table:
```
m <- aov(mpg ~ cyl + am, data = mtcars)
summary(m)

(aov actually uses lm to fit the model, but by using aov we specify that we want an
ANOVA table to be printed by summary.)

When there are different numbers of observations in the groups in an ANOVA, so
that we have an unbalanced design, the sums of squares used to compute the test
statistics can be computed in at least three different ways, commonly called type I,
II and III. See Herr (1986) for an overview and discussion of this.

summary prints a type I ANOVA table, which isn’t the best choice for unbalanced
designs. We can however get type II or III tables by instead using Anova from the
car package to print the table:

library(car)
Anova(m, type = "II")
Anova(m, type = "III") # Default in SAS and SPSS.

As a guideline, for unbalanced designs, you should use type II tables if there are no
interactions, and type III tables if there are interactions. To look for interactions, we
can use interaction.plot to create a two-way interaction plot:

interaction.plot(mtcars$am, mtcars$cyl, response = mtcars$mpg)

In this case, there is no sign of an interaction between the two variables, as the lines
are more or less parallel. A type II table is therefore probably the best choice here.

We can obtain diagnostic plots the same way we did for other linear models:

library(ggfortify)
autoplot(m, which = 1:6, ncol = 2, label.size = 3)

To find which groups that have significantly different means, we can use a post hoc
test like Tukey’s HSD, available through the TukeyHSD function:

TukeyHSD(m)

We can visualise the results of Tukey’s HSD with plot, which shows 95 % confidence
intervals for the mean differences:

# When the difference isn't significant, the dashed line indicating
# "no differences" falls within the confidence interval for
# the difference:
plot(TukeyHSD(m, "am"))

# When the difference is significant, the dashed line does not
# fall within the confidence interval:
plot(TukeyHSD(m, "cyl"))
Exercise 8.11. Return to the residual plots that you created with `autoplot`. Figure out how you can plot points belonging to different `cyl` groups in different colours.

Exercise 8.12. The `aovp` function in the `lmPerm` package can be utilised to perform permutation tests instead of the classical parametric ANOVA tests. Rerun the analysis in the example above, using `aovp` instead. Do the conclusions change? What happens if you run your code multiple times? Does using `summary` on a model fitted using `aovp` generate a type I, II or III table by default? Can you change what type of table it produces?

Exercise 8.13. In the case of a one-way ANOVA (i.e. ANOVA with a single explanatory variable), the Kruskal-Wallis test can be used as a nonparametric option. It is available in `kruskal.test`. Use the Kruskal-Wallis test to run a one-way ANOVA for the `mtcars` data, with `mpg` as the response variable and `cyl` as an explanatory variable.

8.1.13 Bayesian estimation of linear models

We can fit Bayesian linear models using the `rstanarm` package. To fit a model to the `mtcars` data using all explanatory variables, we can use `stan_glm` in place of `lm` as follows:

```r
library(rstanarm)
m <- stan_glm(mpg ~ ., data = mtcars)

Print the estimates:
coef(m)
```

Next, we can plot the posterior distributions of the effects:

```r
plot(m, "dens", pars = names(coef(m)))
```

To get 95% credible intervals for the effects, we can use `posterior_interval`:

```r
posterior_interval(m, pars = names(coef(m)), prob = 0.95)
```

We can also plot them using `plot`:

```r
plot(m, "intervals", pars = names(coef(m)), prob = 0.95)
```
Finally, we can use $\hat{R}$ to check model convergence. It should be less than 1.1 if the fitting has converged:

```
plot(m, "rhat")
```

Like for `lm`, `residuals(m)` provides the model residuals, which can be used for diagnostics. For instance, we can plot the residuals against the fitted values to look for signs of non-linearity, adding a curve to aid the eye:

```
model_diag <- data.frame(Fitted = predict(m), Residual = residuals(m))
library(ggplot2)
ggplot(model_diag, aes(Fitted, Residual)) + geom_point() + geom_smooth(se = FALSE)
```

For fitting ANOVA models, we can instead use `stan_aov` with the argument `prior = R2(location = 0.5)` to fit the model.

### 8.2 Ethical issues in regression modelling

The p-hacking problem, discussed in Section 7.4, is perhaps particularly prevalent in regression modelling. Regression analysis often involves a large number of explanatory variables, and practitioners often try out several different models (e.g. by performing stepwise variable selection; see Section 8.1.9). Because so many hypotheses are tested, often in many different but similar models, there is a large risk of false discoveries.

In any regression analysis, there is a risk of finding spurious relationships. These are dependencies between the response variable and an explanatory variable that either are non-causal or are purely coincidental. As an example of the former, consider the number of deaths by drowning, which is strongly correlated with ice cream sales. Not because ice cream cause people to drown, but because both are affected by the weather: we are more likely to go swimming or buy ice cream on hot days. Lurking variables, like the temperature in the ice cream-drowning example, are commonly referred to as confounding factors. An effect may be statistically significant, but that does not necessarily mean that it is meaningful.

~

**Exercise 8.14.** Discuss the following. You are tasked with analysing a study on whether Vitamin D protects against the flu. One group of patients are given Vitamin D supplements, and one group is given a placebo. You plan on fitting a
regression model to estimate the effect of the vitamin supplements, but note that some confounding factors that you have reason to believe are of importance, such as age and ethnicity, are missing from the data. You can therefore not include them as explanatory variables in the model. Should you still fit the model?

Exercise 8.15. Discuss the following. You are fitting a linear regression model to a dataset from a medical study on a new drug which potentially can have serious side effects. The test subjects take a risk by participating in the study. Each observation in the dataset corresponds to a test subject. Like all ordinary linear regression models, your model gives more weight to observations that deviate from the average (and have a high leverage or Cook’s distance). Given the risks involved for the test subjects, is it fair to give different weight to data from different individuals? Is it OK to remove outliers because they influence the results too much, meaning that the risk that the subject took was for nought?

8.3 Generalised linear models

Generalised linear models, abbreviated GLM, are (yes) a generalisation of the linear model, that can be used when your response variable has a non-normal error distribution. Typical examples are when your response variable is binary (only takes two values, e.g. 0 or 1), or a count of something. Fitting GLM’s is more or less entirely analogous to fitting linear models in R, but model diagnostics are very different. In this section we will look at some examples of how it can be done.

8.3.1 Modelling proportions: Logistic regression

As the first example of binary data, we will consider the wine quality dataset wine from Cortez et al. (2009), which is available in the UCI Machine Learning Repository at http://archive.ics.uci.edu/ml/datasets/Wine+Quality. It contains measurements on white and red vinho verde wine samples from northern Portugal.

We start by loading the data. It is divided into two separate .csv files, one for white wines and one for red, which we have to merge:

```r
Import data about white and red wines:
white <- read.csv("https://tinyurl.com/winedata1",
sep = ";")
red <- read.csv("https://tinyurl.com/winedata2",
sep = ",;")

Add a type variable:
white$type <- "white"
red$type <- "red"

Merge the datasets:
```

```r
```
We are interested in seeing if measurements like pH (pH) and alcohol content (alcohol) can be used to determine the colours of the wine. The colour is represented by the type variable, which is binary.

Our model is that the type of a randomly selected wine is binomial $Bin(1, \pi_i)$-distributed (Bernoulli distributed), where $\pi_i$ depends on explanatory variables like pH and alcohol content. A common model for this situation is a logistic regression model. Given $n$ observations of $p$ explanatory variables, the model is:

$$\log \left( \frac{\pi_i}{1 - \pi_i} \right) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip}, \quad i = 1, \ldots, n$$

Where we in linear regression models model the expected value of the response variable as a linear function of the explanatory variables, we now model the expected value of a function of the expected value of the response variable (that is, a function of $\pi_i$). In GLM terminology, this function is known as a link function.

Logistic regression models can be fitted using the `glm` function. To specify what our model is, we use the argument `family = binomial`:

```r
m <- glm(type ~ pH + alcohol, data = wine, family = binomial)
```

The p-values presented in the summary table are based on a Wald test known to have poor performance unless the sample size is very large (Agresti, 2013). In this case, with a sample size of 6,497, it is probably safe to use, but for smaller sample sizes, it is preferable to use a bootstrap test instead, which you will do in Exercise 8.18.

The coefficients of a logistic regression model aren’t as straightforward to interpret as those in a linear model. If we let $\beta$ denote a coefficient corresponding to an explanatory variable $x$, then:

- If $\beta$ is positive, then $\pi_i$ increases when $x_i$ increases.
- If $\beta$ is negative, then $\pi_i$ decreases when $x_i$ increases.
- $e^\beta$ is the odds ratio, which shows how much the odds $\frac{\pi_i}{1 - \pi_i}$ change when $x_i$ is increased 1 step.

We can extract the coefficients and odds ratios using `coef`:

```r
coef(m) # Coefficients, beta
exp(coef(m)) # Odds ratios
```
To find the fitted probability that an observation belongs to the second class we can use `predict(m, type = "response")`:

```r
Check which class is the second one:
levels(wine$type)
"white" is the second class!

Get fitted probabilities:
probs <- predict(m, type = "response")

Check what the average prediction is for
the two groups:
mean(probs[wine$type == "red"])
mean(probs[wine$type == "white"])
```

It turns out that the model predicts that most wines are white - even the red ones! The reason may be that we have more white wines (4,898) than red wines (1,599) in the dataset. Adding more explanatory variables could perhaps solve this problem. We’ll give that a try in the next section.

```r
~
```

**Exercise 8.16.** Download sharks.csv file from the book’s web page. It contains information about shark attacks in South Africa. Using data on attacks that occurred in 2000 or later, fit a logistic regression model to investigate whether the age and sex of the individual that was attacked affect the probability of the attack being fatal.

Note: save the code for your model, as you will return to it in the subsequent exercises.

**Exercise 8.17.** In Section 8.1.8 we saw how some functions from the `broom` package could be used to get summaries of linear models. Try using them with the `wine` data model that we created above. Do the `broom` functions work for generalised linear models as well?

### 8.3.2 Bootstrap confidence intervals

In a logistic regression, the response variable $y_i$ is a binomial (or Bernoulli) random variable with success probability $\pi_i$. In this case, we don’t want to resample residuals to create confidence intervals, as it turns out that this can lead to predicted probabilities outside the range (0, 1). Instead, we can either use the case resampling strategy described in Exercise 8.9 or use a parametric bootstrap approach where we generate new binomial variables (Section 7.1.2) to construct bootstrap confidence intervals.

To use case resampling, we can use `boot_summary` from `boot.pval`:
In the parametric approach, for each observation, the fitted success probability from the logistic model will be used to sample new observations of the response variable. This method can work well if the model is well-specified but tends to perform poorly for misspecified models, so make sure to carefully perform model diagnostics (as described in the next section) before applying it. To use the parametric approach, we can do as follows:

```r
library(boot)

coefficients <- function(formula, data, predictions, ...) {
Check whether the response variable is a factor or numeric, and then resample:
if(is.factor(data[,all.vars(formula)[1]])) {
 # If the response variable is a factor:
 data[,all.vars(formula)[1]] <-
 factor(levels(data[,all.vars(formula)[1]])[1 + rbinom(nrow(data), 1, predictions)])
} else {
 # If the response variable is numeric:
 data[,all.vars(formula)[1]] <-
 unique(data[,all.vars(formula)[1]])[1 + rbinom(nrow(data), 1, predictions)]
}

m <- glm(formula, data = data, family = binomial)
return(coef(m))
}

m <- glm(type ~ pH + alcohol, data = wine, family = binomial)

boot_res <- boot(data = wine, statistic = coefficients,
 R = 999,
 formula = formula(m),
 predictions = predict(m, type = "response"))

Compute confidence intervals:
boot.ci(boot_res, type = "perc", index = 1) # Intercept
boot.ci(boot_res, type = "perc", index = 2) # pH
boot.ci(boot_res, type = "perc", index = 3) # Alcohol
```
8.3. GENERALISED LINEAR MODELS

Exercise 8.18. Use the model that you fitted to the sharks.csv data in Exercise 8.16 for the following:

1. When the MASS package is loaded, you can use confint to obtain (asymptotic) confidence intervals for the parameters of a GLM. Use it to compute confidence intervals for the parameters of your model for the sharks.csv data.

2. Compute parametric bootstrap confidence intervals and p-values for the parameters of your logistic regression model for the sharks.csv data. Do they differ from the intervals obtained using confint? Note that there are a lot of missing values for the response variable. Think about how that will affect your bootstrap intervals and adjust your code accordingly.

3. Use the confidence interval inversion method of Section 7.7.3 to compute bootstrap p-values for the effect of age.

8.3.3 Model diagnostics

It is notoriously difficult to assess model fit for GLM’s, because the behaviour of the residuals is very different from residuals in ordinary linear models. In the case of logistic regression, the response variable is always 0 or 1, meaning that there will be two bands of residuals:

```r
Store deviance residuals:
m <- glm(type ~ pH + alcohol, data = wine, family = binomial)
res <- data.frame(Predicted <- predict(m),
 Residuals <- residuals(m, type = "deviance"),
 Index = 1:nrow(m$data),
 CooksDistance = cooks.distance(m))

Plot fitted values against the deviance residuals:
library(ggplot2)
ggplot(res, aes(Predicted, Residuals)) +
 geom_point()

Plot index against the deviance residuals:
ggplot(res, aes(Index, Residuals)) +
 geom_point()
```

Plots of raw residuals are of little use in logistic regression models. A better option is to use a binned residual plot, in which the observations are grouped into bins based on their fitted value. The average residual in each bin can then be computed, which will tell us if which parts of the model have a poor fit. A function for this is available in the arm package:
The grey lines show confidence bounds which are supposed to contain about 95% of the bins. If too many points fall outside these bounds, it’s a sign that we have a poor model fit. In this case, there are a few points outside the bounds. Most notably, the average residuals are fairly large for the observations with the lowest fitted values, i.e. among the observations with the lowest predicted probability of being white wines.

Let’s compare the above plot to that for a model with more explanatory variables:

```r
m2 <- glm(type ~ pH + alcohol + fixed.acidity + residual.sugar, data = wine, family = binomial)

binnedplot(predict(m2, type = "response"), residuals(m2, type = "response"))
```

This looks much better - adding more explanatory variable appears to have improved the model fit.

It’s worth repeating that if your main interest is hypothesis testing, you shouldn’t fit multiple models and then pick the one that gives the best results. However, if you’re doing an exploratory analysis or are interested in predictive modelling, you can and should try different models. It can then be useful to do a formal hypothesis test of the null hypothesis that \( m \) and \( m_2 \) fit the data equally well, against the alternative that \( m_2 \) has a better fit. If both fit the data equally well, we’d prefer \( m \), since it is a simpler model. We can use `anova` to perform a likelihood ratio deviance test (see Section 12.4 for details), which tests this:

```r
anova(m, m2, test = "LRT")
```

The p-value is very low, and we conclude that \( m_2 \) has a better model fit.

Another useful function is `cooks.distance`, which can be used to compute the Cook’s distance for each observation, which is useful for finding influential observations. In this case, I’ve chosen to print the row numbers for the observations with a Cook’s distance greater than 0.004 - this number has been arbitrarily chosen in order only to highlight the observations with the highest Cook’s distance.

```r
res <- data.frame(Index = 1:length(cooks.distance(m)), CooksDistance = cooks.distance(m))

Plot index against the Cook's distance to find
```
321

Exercise 8.19. Investigate the residuals for your sharks.csv model. Are there any problems with the model fit? Any influential points?

8.3.4 Prediction

Just as for linear models, we can use `predict` to make predictions for new observations using a GLM. To begin with, let’s randomly sample 10 rows from the wine data and fit a model using all data except those ten observations:

```r
Randomly select 10 rows from the wine data:
rows <- sample(1:nrow(wine), 10)

m <- glm(type ~ pH + alcohol, data = wine[-rows,], family = binomial)
```

We can now use `predict` to make predictions for the ten observations:

```r
preds <- predict(m, wine[rows,])
preds
```

Those predictions look a bit strange though - what are they? By default, `predict` returns predictions on the scale of the link function. That’s not really what we want in most cases - instead, we are interested in the predicted probabilities. To get those, we have to add the argument `type = "response"` to the call:

```r
preds <- predict(m, wine[rows,], type = "response")
preds
```

Logistic regression models are often used for prediction, in what is known as classification. Section 9.1.7 is concerned with how to evaluate the predictive performance of logistic regression and other classification models.

8.3.5 Modelling count data

Logistic regression is but one of many types of GLM’s used in practice. One important example is Cox regression, which is used for survival data. We’ll return to that model in Section 8.5. For now, we’ll consider count data instead. Let’s have a look at the
shark attack data in `sharks.csv`, available on the book’s website. It contains data about shark attacks in South Africa, downloaded from The Global Shark Attack File (http://www.sharkattackfile.net/incidentlog.htm). To load it, we download the file and set `file_path` to the path of `sharks.csv`:

```r
sharks <- read.csv(file_path, sep = ";")
```

# Compute number of attacks per year:
attacks <- aggregate(Type ~ Year, data = sharks, FUN = length)

# Keep data for 1960-2019:
attacks <- subset(attacks, Year >= 1960)

The number of attacks in a year is not binary but a count that, in principle, can take any non-negative integer as its value. Are there any trends over time for the number of reported attacks?

```r
Plot data from 1960-2019:
library(ggplot2)
ggplot(attacks, aes(Year, Type)) + geom_point() + ylab("Number of attacks")
```

No trend is evident. To confirm this, let’s fit a regression model with `Type` (the number of attacks) as the response variable and `Year` as an explanatory variable. For count data like this, a good first model to use is Poisson regression. Let \( \mu_i \) denote the expected value of the response variable given the explanatory variables. Given \( n \) observations of \( p \) explanatory variables, the Poisson regression model is:

\[
\log(\mu_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip}, \quad i = 1, \ldots, n
\]

To fit it, we use `glm` as before, but this time with `family = poisson`:

```r
m <- glm(Type ~ Year, data = attacks, family = poisson)
summary(m)
```

We can add the curve corresponding to the fitted model to our scatterplot as follows:

```r
attacks_pred <- data.frame(Year = attacks$Year, at_pred = predict(m, type = "response"))
ggplot(attacks, aes(Year, Type)) + geom_point() + ylab("Number of attacks") + geom_line(data = attacks_pred, aes(x = Year, y = at_pred), colour = "red")
```
The fitted model seems to confirm our view that there is no trend over time in the number of attacks.

For model diagnostics, we can use a binned residual plot and a plot of Cook’s distance to find influential points:

```r
Binned residual plot:
library(arm)
binnedplot(predict(m, type = "response"), residuals(m, type = "response"))
```

```r
Plot index against the Cook's distance to find influential points:
res <- data.frame(Index = 1:nrow(m$data),
 CooksDistance = cooks.distance(m))
ggplot(res, aes(Index, CooksDistance)) +
 geom_point() +
 geom_text(aes(label = ifelse(CooksDistance > 0.1, rownames(res), "")),
 hjust = 1.1)
```

A common problem in Poisson regression models is excess zeros, i.e. more observations with value 0 than what is predicted by the model. To check the distribution of counts in the data, we can draw a histogram:

```r
ggplot(attacks, aes(Type)) +
 geom_histogram(binwidth = 1, colour = "black")
```

If there are a lot of zeroes in the data, we should consider using another model, such as a hurdle model or a zero-inflated Poisson regression. Both of these are available in the pscl package.

Another common problem is overdispersion, which occurs when there is more variability in the data than what is predicted by the GLM. A formal test of overdispersion (Cameron & Trivedi, 1990) is provided by dispersiontest in the AER package. The null hypothesis is that there is no overdispersion, and the alternative that there is overdispersion:

```r
install.packages("AER")
library(AER)
dispersiontest(m, trafo = 1)
```

There are several alternative models that can be considered in the case of overdispersion. One of them is negative binomial regression, which uses the same link function as Poisson regression. We can fit it using the glm.nb function from MASS:
```r
library(MASS)
m_nb <- glm.nb(Type ~ Year, data = attacks)
summary(m_nb)
```

For the shark attack data, the predictions from the two models are virtually identical, meaning that both are equally applicable in this case:

```r
attacks_pred <- data.frame(Year = attacks$Year, at_pred = predict(m, type = "response"))
attacks_pred_nb <- data.frame(Year = attacks$Year, at_pred = predict(m_nb, type = "response"))
```

```r
ggplot(attacks, aes(Year, Type)) +
geom_point() +
 ylab("Number of attacks") +
geom_line(data = attacks_pred, aes(x = Year, y = at_pred),
 colour = "red") +
geom_line(data = attacks_pred_nb, aes(x = Year, y = at_pred),
 colour = "blue", linetype = "dashed")
```

Finally, we can obtain bootstrap confidence intervals e.g. using case resampling, using `boot_summary`:

```r
library(boot.pval)
boot_summary(m_nb, type = "perc", method = "case")
```

---

**Exercise 8.20.** The `quakes` dataset, available in base R, contains information about seismic events off Fiji. Fit a Poisson regression model with `stations` as the response variable and `mag` as an explanatory variable. Are there signs of overdispersion? Does using a negative binomial model improve the model fit?

### 8.3.6 Modelling rates

Poisson regression models, and related models like negative binomial regression, can not only be used to model count data. They can also be used to model rate data, such as the number of cases per capita or the number of cases per unit area. In that case, we need to include an exposure variable \( N \) that describes e.g. the population size or area corresponding to each observation. The model will be that:

\[
\log(\mu_i / N_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip}, \quad i = 1, \ldots, n.
\]
Because \( \log(\mu_i/N_i) = \log(\mu_i) - \log(N_i) \), this can be rewritten as:

\[
\log(\mu_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip} + \log(N_i), \quad i = 1, \ldots, n.
\]

In other words, we should include \( \log(N_i) \) on the right-hand side of our model, with a known coefficient equal to 1. In regression, such a term is known as an offset. We can add it to our model using the \texttt{offset} function.

As an example, we’ll consider the \texttt{ships} data from the \texttt{MASS} package. It describes the number of damage incidents for different ship types operating in the 1960’s and 1970’s, and includes information about how many months each ship type was in service (i.e. each ship type’s \textit{exposure}):

```r
library(MASS)
?ships
View(ships)
```

For our example, we’ll use ship \texttt{type} as the explanatory variable, \texttt{incidents} as the response variable and \texttt{service} as the exposure variable. First, we remove observations with 0 exposure (by definition, these can’t be involved in incidents, and so there is no point in including them in the analysis). Then, we fit the model using \texttt{glm} and \texttt{offset}:

```r
ships <- ships[ships$service != 0,]
m <- glm(incidents ~ type + offset(log(service)),
 data = ships,
 family = poisson)
summary(m)
```

Model diagnostics can be performed as in the previous sections.

Rate models are usually interpreted in terms of the rate ratios \( e^{\beta_j} \), which describe the multiplicative increases of the intensity of rates when \( x_j \) is increased by one unit. To compute the rate ratios for our model, we use \texttt{exp}:

```r
exp(coef(m))
```

\sim\text{Exercise 8.21.} Compute bootstrap confidence intervals for the rate ratios in the model for the \texttt{ships} data.
8.3.7 Bayesian estimation of generalised linear models

We can fit a Bayesian GLM with the `rstanarm` package, using `stan_glm` in the same way we did for linear models. Let’s look at an example with the `wine` data. First, we load and prepare the data:

```r
Import data about white and red wines:
white <- read.csv("https://tinyurl.com/winedata1", sep = ";")
red <- read.csv("https://tinyurl.com/winedata2", sep = ";")
white$type <- "white"
red$type <- "red"
wine <- rbind(white, red)
wine$type <- factor(wine$type)
```

Now, we fit a Bayesian logistic regression model:

```r
library(rstanarm)
m <- stan_glm(type ~ pH + alcohol, data = wine, family = binomial)
Print the estimates:
coef(m)
```

Next, we can plot the posterior distributions of the effects:

```r
plot(m, "dens", pars = names(coef(m)))
```

To get 95% credible intervals for the effects, we can use `posterior_interval`. We can also use `plot` to visualise them:

```r
posterior_interval(m,
pars = names(coef(m)),
prob = 0.95)
plot(m, "intervals",
pars = names(coef(m)),
prob = 0.95)
```

Finally, we can use $\hat{R}$ to check model convergence. It should be less than 1.1 if the fitting has converged:

```r
plot(m, "rhat")
```
8.4 Mixed models

Mixed models are used in regression problems where measurements have been made on clusters of related units. As the first example of this, we’ll use a dataset from the lme4 package, which also happens to contain useful methods for mixed models. Let’s install it:

```r
install.packages("lme4")
```

The sleepstudy dataset from lme4 contains data from a study on reaction times in a sleep deprivation study. The participants were restricted to 3 hours of sleep per night, and their average reaction time on a series of tests were measured each day during the 9 days that the study lasted:

```r
library(lme4)
?sleepstudy
str(sleepstudy)
```

Let’s start our analysis by making boxplots showing reaction times for each subject. We’ll also superimpose the observations for each participant on top of their boxplots:

```r
library(ggplot2)
ggplot(sleepstudy, aes(Subject, Reaction)) +
 geom_boxplot() +
 geom_jitter(aes(colour = Subject),
 position = position_jitter(0.1))
```

We are interested in finding out if the reaction times increase when the participants have been starved for sleep for a longer period. Let’s try plotting reaction times against days, adding a regression line:

```r
ggplot(sleepstudy, aes(Days, Reaction, colour = Subject)) +
 geom_point() +
 geom_smooth(method = "lm", colour = "black", se = FALSE)
```

As we saw in the boxplots, and can see in this plot too, some participants always have comparatively high reaction times, whereas others always have low values. There are clear differences between individuals, and the measurements for each individual will be correlated. This violates a fundamental assumption of the traditional linear model, namely that all observations are independent.

In addition to this, it also seems that the reaction times change in different ways for different participants, as can be seen if we facet the plot by test subject:

```r
ggplot(sleepstudy, aes(Days, Reaction, colour = Subject)) +
 geom_point() +
 theme(legend.position = "none") +
 facet_wrap(~ Subject, nrow = 3) +
 geom_smooth(method = "lm", colour = "black", se = FALSE)
```
Both the intercept and the slope of the average reaction time differs between individuals. Because of this, the fit given by the single model can be misleading. Moreover, the fact that the observations are correlated will cause problems for the traditional intervals and tests. We need to take this into account when we estimate the overall intercept and slope.

One approach could be to fit a single model for each subject. That doesn’t seem very useful though. We’re not really interested in these particular test subjects, but in how sleep deprivation affects reaction times in an average person. It would be much better to have a single model that somehow incorporates the correlation between measurements made on the same individual. That is precisely what a linear mixed regression model does.

### 8.4.1 Fitting a linear mixed model

A linear mixed model (LMM) has two types of effects (explanatory variables):

- **Fixed effects**, which are non-random. These are usually the variables of primary interest in the data. In the `sleepstudy` example, `Days` is a fixed effect.
- **Random effects**, which represent nuisance variables that cause measurements to be correlated. These are usually not of interest in and of themselves, but are something that we need to include in the model to account for correlations between measurements. In the `sleepstudy` example, `Subject` is a random effect.

Linear mixed models can be fitted using `lmer` from the `lme4` package. The syntax is the same as for `lm`, with the addition of random effects. These can be included in different ways. Let’s have a look at them.

First, we can include a **random intercept**, which gives us a model where the intercept (but not the slope) varies between test subjects. In our example, the formula for this is:

```r
library(lme4)
m1 <- lmer(Reaction ~ Days + (1|Subject), data = sleepstudy)
```

Alternatively, we could include a **random slope** in the model, in which case the slope (but not the intercept) varies between test subjects. The formula would be:

```r
m2 <- lmer(Reaction ~ Days + (0 + Days|Subject), data = sleepstudy)
```

Finally, we can include both a random intercept and random slope in the model. This can be done in two different ways, as we can model the intercept and slope as being correlated or uncorrelated:
# Correlated random intercept and slope:
m3 <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)

# Uncorrelated random intercept and slope:
m4 <- lmer(Reaction ~ Days + (1 | Subject) + (0 + Days | Subject),
            data = sleepstudy)

Which model should we choose? Are the intercepts and slopes correlated? It could of course be the case that individuals with a high intercept have a smaller slope - or a greater slope! To find out, we can fit different linear models to each subject, and then make a scatterplot of their intercepts and slopes. To fit a model to each subject, we use `split` and `map` as in Section 8.1.11:

# Collect the coefficients from each linear model:
library(purrr)
sleepstudy %>% split(.$Subject) %>%
    map(~ lm(Reaction ~ Days, data = .)) %>%
    map(coef) -> coefficients

# Convert to a data frame:
coefficients <- data.frame(matrix(unlist(coefficients),
                                   nrow = length(coefficients),
                                   byrow = TRUE),
   row.names = names(coefficients))

names(coefficients) <- c("Intercept", "Days")

# Plot the coefficients:
ggplot(coefficients, aes(Intercept, Days,
                        colour = row.names(coefficients))) +
    geom_point() +
    geom_smooth(method = "lm", colour = "black", se = FALSE) +
    labs(fill = "Subject")

# Test the correlation:
cor.test(coefficients$ Intercept, coefficients$ Days)

The correlation test is not significant, and judging from the plot, there is little indication that the intercept and slope are correlated. We saw earlier that both the intercept and the slope seem to differ between subjects, and so m4 seems like the best choice here. Let’s stick with that, and look at a summary table for the model.

summary(m4, correlation = FALSE)

I like to add `correlation = FALSE` here, which suppresses some superfluous output from `summary`. 

4. MIXED MODELS
You’ll notice that unlike the summary table for linear models, there are no p-values! This is a deliberate design choice from the lme4 developers, who argue that the approximate test available aren’t good enough for small sample sizes (Bates et al., 2015).

Using the bootstrap, as we will do in Section 8.4.3, is usually the best approach for mixed models. If you really want some quick p-values, you can load the lmerTest package, which adds p-values computed using the Satterthwaite approximation (Kuznetsova et al., 2017). This is better than the usual approximate test, but still not perfect.

```r
install.packages("lmerTest")
library(lmerTest)
m4 <- lmer(Reaction ~ Days + (1|Subject) + (0 + Days|Subject),
 data = sleepstudy)
summary(m4, correlation = FALSE)
```

If we need to extract the model coefficients, we can do so using fixef (for the fixed effects) and ranef (for the random effects):

```r
fixef(m4)
ranef(m4)
```

If we want to extract the variance components from the model, we can use VarCorr:

```r
VarCorr(m4)
```

Let’s add the lines from the fitted model to our facetted plot, to compare the results of our mixed model to the lines that were fitted separately for each individual:

```r
mixed_mod <- coef(m4)$Subject
mixed_mod$Subject <- row.names(mixed_mod)

ggplot(sleepstudy, aes(Days, Reaction)) +
 geom_point() +
 theme(legend.position = "none") +
 facet_wrap(~ Subject, nrow = 3) +
 geom_smooth(method = "lm", colour = "cyan", se = FALSE,
 size = 0.8) +
 geom_abline(aes(intercept = `(Intercept)`), slope = Days,
 color = "magenta"),
 data = mixed_mod, size = 0.8)
```

Notice that the lines differ. The intercept and slopes have been shrunk toward the global effects, i.e. toward the average of all lines.
Exercise 8.22. Consider the Oxboys data from the nlme package. Does a mixed model seem appropriate here? If so, is the intercept and slope for different subjects correlated? Fit a suitable model, with height as the response variable.

Save the code for your model, as you will return to it in the next few exercises.

Exercise 8.23. The broom.mixed package allows you to get summaries of mixed models as data frames, just as broom does for linear and generalised linear models. Install it and use it to get the summary table for the model for the Oxboys data that you created in the previous exercise. How are fixed and random effects included in the table?

### 8.4.2 Model diagnostics

As for any linear model, residual plots are useful for diagnostics for linear mixed models. Of particular interest are signs of heteroscedasticity, as homoscedasticity is assumed in the mixed model. We’ll use fortify.merMod to turn the model into an object that can be used with ggplot2, and then create some residual plots:

```r
library(ggplot2)
fm4 <- fortify.merMod(m4)

Plot residuals:
ggplot(fm4, aes(.fitted, .resid)) +
 geom_point() +
 geom_hline(yintercept = 0) +
 xlab("Fitted values") + ylab("Residuals")

Compare the residuals of different subjects:
ggplot(fm4, aes(Subject, .resid)) +
 geom_boxplot() +
 coord_flip() +
 ylab("Residuals")

Observed values versus fitted values:
ggplot(fm4, aes(.fitted, Reaction)) +
 geom_point(colour = "blue") +
 facet_wrap(~ Subject, nrow = 3) +
 geom_abline(intercept = 0, slope = 1) +
 xlab("Fitted values") + ylab("Observed values")

Q-Q plot of residuals:
```
The normality assumption appears to be satisfied, but there are some signs of heteroscedasticity in the boxplots of the residuals for the different subjects.

---

**Exercise 8.24.** Return to your mixed model for the Oxboys data from Exercise 8.22. Make diagnostic plots for the model. Are there any signs of heteroscedasticity or non-normality?

### 8.4.3 Bootstrapping

Summary tables, including p-values, for the fixed effects are available through `boot_summary`:

```r
library(boot.pval)
boot_summary(m4, type = "perc")
```

`boot_summary` calls a function called `bootMer`, which performs parametric resampling from the model. In case you want to call it directly, you can do as follows:

```r
boot_res <- bootMer(m4, fixef, nsim = 999)
library(boot)
boot.ci(boot_res, type = "perc", index = 1) # Intercept
boot.ci(boot_res, type = "perc", index = 2) # Days
```

### 8.4.4 Nested random effects and multilevel/hierarchical models

In many cases, a random factor is nested within another. To see an example of this, consider the Pastes data from lme4:

```r
library(lme4)
?Pastes
str(Pastes)
```
We are interested in the strength of a chemical product. There are ten delivery batches (batch), and three casks within each delivery (cask). Because of variations in manufacturing, transportation, storage, and so on, it makes sense to include random effects for both batch and cask in a linear mixed model. However, each cask only appears within a single batch, which makes the cask effect nested within batch.

Models that use nested random factors are commonly known as multilevel models (the random factors exist at different “levels”), or hierarchical models (there is a hierarchy between the random factors). These aren’t really any different from other mixed models, but depending on how the data is structured, we may have to be a bit careful to get the nesting right when we fit the model with \texttt{lmer}.

If the two effects weren’t nested, we could fit a model using:

```r
Incorrect model:
m1 <- lmer(strength ~ (1|batch) + (1|cask),
 data = Pastes)
summary(m1, correlation = FALSE)
```

However, because the casks are labelled a, b, and c within each batch, we’ve now fitted a model where casks from different batches are treated as being equal! To clarify that the labels a, b, and c belong to different casks in different batches, we need to include the nesting in our formula. This is done as follows:

```r
Cask in nested within batch:
m2 <- lmer(strength ~ (1|batch/cask),
 data = Pastes)
summary(m2, correlation = FALSE)
```

Equivalently, we can also use:

```r
m3 <- lmer(strength ~ (1|batch) + (1|batch:cask),
 data = Pastes)
summary(m3, correlation = FALSE)
```

### 8.4.5 ANOVA with random effects

The \texttt{lmerTest} package provides ANOVA tables that allow us to use random effects in ANOVA models. To use it, simply load \texttt{lmerTest} before fitting a model with \texttt{lmer}, and then run \texttt{anova(m, type = "III")} (or replace III with II or I if you want a type II or type I ANOVA table instead).

As an example, consider the TVbo data from \texttt{lmerTest}. 3 types of TV sets were compared by 8 assessors for 4 different pictures. To see if there is a difference in the mean score for the colour balance of the TV sets, we can fit a mixed model. We’ll include a random intercept for the assessor. This is a balanced design (in which case the results from all three types of tables coincide):
library(lmerTest)

# TV data:
?TVbo

# Fit model with both fixed and random effects:
m <- lmer(Colourbalance ~ TVset*Picture + (1|Assessor),
          data = TVbo)

# View fitted model:
m

# All three types of ANOVA table give the same results here:
anova(m, type = "III")
anova(m, type = "II")
anova(m, type = "I")

The interaction effect is significant at the 5 % level. As for other ANOVA models, we can visualise this with an interaction plot:

interaction.plot(TVbo$TVset, TVbo$Picture,
                response = TVbo$Colourbalance)

~

Exercise 8.25. Fit a mixed effects ANOVA to the TVbo data, using Coloursaturation as the response variable, TVset and Picture as fixed effects, and Assessor as a random effect. Does there appear to be a need to include the interaction between Assessor and TVset as a random effect? If so, do it.

8.4.6 Generalised linear mixed models

Everything that we have just done for the linear mixed models carries over to generalised linear mixed models (GLMM), which are GLM’s with both fixed and random effects.

A common example is the item response model, which plays an important role in psychometrics. This model is frequently used in psychological tests containing multiple questions or sets of questions (“items”), where both the subject the item are considered random effects. As an example, consider the VerbAgg data from lme4:

library(lme4)
?VerbAgg
View(VerbAgg)
We’ll use the binary version of the response, r2, and fit a logistic mixed regression model to the data, to see if it can be used to explain the subjects’ responses. The formula syntax is the same as for linear mixed models, but now we’ll use glmer to fit a GLMM. We’ll include Anger and Gender as fixed effects (we are interested in seeing how these affect the response) and item and id as random effects with random slopes (we believe that answers to the same item and answers from the same individual may be correlated):

```r
m <- glmer(r2 ~ Anger + Gender + (1|item) + (1|id),
 data = VerbAgg, family = binomial)
summary(m, correlation = FALSE)
```

We can plot the fitted random effects for item to verify that there appear to be differences between the different items:

```r
mixed_mod <- coef(m)$item
mixed_mod$item <- row.names(mixed_mod)

ggplot(mixed_mod, aes(~(Intercept), item)) +
 geom_point() +
 xlab("Random intercept")
```

The situ variable, describing situation type, also appears interesting. Let’s include it as a fixed effect. Let’s also allow different situational (random) effects for different respondents. It seems reasonable that such responses are random rather than fixed (as in the solution to Exercise 8.25), and we do have repeated measurements of these responses. We’ll therefore also include situ as a random effect nested within id:

```r
m <- glmer(r2 ~ Anger + Gender + situ + (1|item) + (1|id/situ),
 data = VerbAgg, family = binomial)
summary(m, correlation = FALSE)
```

Finally, we’d like to obtain bootstrap confidence intervals for fixed effects. Because this is a fairly large dataset (n = 7,584) this can take a looong time to run, so stretch your legs and grab a cup of coffee or two while you wait:

```r
library(boot.pval)
boot_summary(m, type = "perc", R = 100)
Ideally, R should be greater, but for the sake of
this example, we’ll use a low number.
```

Exercise 8.26. Consider the grouseticks data from the lme4 package (Elston et al., 2001). Fit a mixed Poisson regression model to the data, with TICKS as the response variable and YEAR and HEIGHT as fixed effects. What variables are suitable
to use for random effects? Compute a bootstrap confidence interval for the effect of \textit{HEIGHT}.

### 8.4.7 Bayesian estimation of mixed models

From a numerical point of view, using Bayesian modelling with \texttt{rstanarm} is preferable to frequentist modelling with \texttt{lme4} if you have complex models with many random effects. Indeed, for some models, \texttt{lme4} will return a warning message about a singular fit, basically meaning that the model is too complex, whereas \texttt{rstanarm}, powered by the use of a prior distribution, always will return a fitted model regardless of complexity.

After loading \texttt{rstanarm}, fitting a Bayesian linear mixed model with a weakly informative prior is as simple as substituting \texttt{lmer} with \texttt{stan_lmer}:

```r
library(lme4)
library(rstanarm)
m4 <- stan_lmer(Reaction ~ Days + (1|Subject) + (0 + Days|Subject),
 data = sleepstudy)
```

To plot the posterior distributions for the coefficients of the fixed effects, we can use \texttt{plot}, specifying which effects we are interested in using \texttt{pars}:

```r
plot(m4, "dens", pars = c("(Intercept)", "Days"))
```

To get 95% credible intervals for the fixed effects, we can use \texttt{posterior_interval} as follows:

```r
posterior_interval(m4,
 pars = c("(Intercept)", "Days"),
 prob = 0.95)
```

We can also plot them using \texttt{plot}:

```r
plot(m4, "intervals",
 pars = c("(Intercept)", "Days"),
 prob = 0.95)
```

Finally, we'll check that the model fitting has converged:

```r
plot(m4, "rhat")
```
8.5 Survival analysis

Many studies are concerned with the duration of time until an event happens: time until a machine fails, time until a patient diagnosed with a disease dies, and so on. In this section we will consider some methods for survival analysis (also known as reliability analysis in engineering and duration analysis in economics), which is used for analysing such data. The main difficulty here is that studies often end before all participants have had events, meaning that some observations are right-censored - for these observations, we don’t know when the event happened, but only that it happened after the end of the study.

The survival package contains a number of useful methods for survival analysis. Let’s install it:

```
install.packages("survival")
```

We will study the lung cancer data in `lung`:

```
library(survival)
?lung
View(lung)
```

The survival times of the patients consist of two parts: `time` (the time from diagnosis until either death or the end of the study) and `status` (1 if the observations is censored, 2 if the patient died before the end of the study). To combine these so that they can be used in a survival analysis, we must create a `Surv` object:

```
Surv(lung$time, lung$status)
```

Here, a `+` sign after a value indicates right-censoring.

8.5.1 Comparing groups

Survival times are best visualised using Kaplan-Meier curves that show the proportion of surviving patients. Let’s compare the survival times of women and men. We first fit a survival model using `survfit`, and then draw the Kaplan-Meier curve (with parametric confidence intervals) using `autoplot` from `ggfortify`:

```
library(ggfortify)
library(survival)
m <- survfit(Surv(time, status) ~ sex, data = lung)
autoplot(m)
```

To print the values for the survival curves at different time points, we can use `summary`:

```
summary(m)
```
To test for differences between two groups, we can use the logrank test (also known as the Mantel-Cox test), given by \texttt{survfit}:

\begin{verbatim}
  survdiff(Surv(time, status) ~ sex, data = lung)
\end{verbatim}

Another option is the Peto-Peto test, which puts more weight on early events (deaths, in the case of the \texttt{lung} data), and therefore is suitable when such events are of greater interest. In contrast, the logrank test puts equal weights on all events regardless of when they occur. The Peto-Peto test is obtained by adding the argument \texttt{rho = 1}:

\begin{verbatim}
  survdiff(Surv(time, status) ~ sex, rho = 1, data = lung)
\end{verbatim}

The \texttt{Hmisc} package contains a function for obtaining confidence intervals based on the Kaplan-Meier estimator, called \texttt{bootkm}. This allows us to get confidence intervals for the quantiles (including the median) of the survival distribution for different groups, as well as for differences between the quantiles of different groups. First, let’s install it:

\begin{verbatim}
  install.packages("Hmisc")
\end{verbatim}

We can now use \texttt{bootkm} to compute bootstrap confidence intervals for survival times based on the \texttt{lung} data. We’ll compute an interval for the median survival time for females, and one for the difference in median survival time between females and males:

\begin{verbatim}
library(Hmisc)

  # Create a survival object:
  survobj <- Surv(lung$time, lung$status)

  # Get bootstrap replicates of the median survival time for
  # the two groups:
  median_surv_time_female <- bootkm(survobj[lung$sex == 2],
                                 q = 0.5, B = 999)
  median_surv_time_male <- bootkm(survobj[lung$sex == 1],
                                q = 0.5, B = 999)

  # 95\% bootstrap confidence interval for the median survival time
  # for females:
  quantile(median_surv_time_female,
           c(.025,.975), na.rm=TRUE)

  # 95\% bootstrap confidence interval for the difference in median
  # survival time:
  quantile(median_surv_time_female - median_surv_time_male,
           c(.025,.975), na.rm=TRUE)
\end{verbatim}
To obtain confidence intervals for other quantiles, we simply change the argument $q$ in `bootkm`.

\begin{exercise}
Consider the `ovarian` data from the `survival` package. Plot Kaplan-Meier curves comparing the two treatment groups. Compute a bootstrap confidence interval for the difference in the 75% quantile for the survival time for the two groups.
\end{exercise}

### 8.5.2 The Cox proportional hazards model

The hazard function, or hazard rate, is the rate of events at time $t$ if a subject has survived until time $t$. The higher the hazard, the greater the probability of an event. Hazard rates play an integral part in survival analysis, particularly in regression models. To model how the survival times are affected by different explanatory variables, we can use a *Cox proportional hazards model* (Cox, 1972), fitted using `coxph`:

```r
m <- coxph(Surv(time, status) ~ age + sex, data = lung)
summary(m)
```

The exponentiated coefficients show the hazard ratios, i.e. the relative increases (values greater than 1) or decreases (values below 1) of the hazard rate when a covariate is increased one step while all others are kept fixed:

```
exp(coef(m))
```

In this case, the hazard increases with age (multiply the hazard by 1.017 for each additional year that the person has lived), and is lower for women (`sex=2`) than for men (`sex=1`).

The `censboot_summary` function from `boot.pval` provides a table of estimates, bootstrap confidence intervals, and bootstrap p-values for the model coefficients. The `coef` argument can be used to specify whether to print confidence intervals for the coefficients or for the exponentiated coefficients (i.e. the hazard ratios):

```
censboot_summary requires us to use model = TRUE
when fitting our regression model:
m <- coxph(Surv(time, status) ~ age + sex,
data = lung, model = TRUE)

library(boot.pval)
Original coefficients:
censboot_summary(m, type = "perc", coef = "raw")
Exponentiated coefficients:
censboot_summary(m, type = "perc", coef = "exp")
```
To manually obtain bootstrap confidence intervals for the exponentiated coefficients, we can use the `censboot` function from `boot` as follows:

```r
Function to get the bootstrap replicates of the exponentiated coefficients:
boot_fun <- function(data, formula) {
 m_boot <- coxph(formula, data = data)
 return(exp(coef(m_boot)))
}

Run the resampling:
library(boot)
boot_res <- censboot(lung[,c("time", "status", "age", "sex")],
 boot_fun, R = 999,
 formula =
 formula(Surv(time, status) ~ age + sex))

Compute the percentile bootstrap confidence intervals:
boot.ci(boot_res, type = "perc", index = 1) # Age
boot.ci(boot_res, type = "perc", index = 2) # Sex
```

As the name implies, the Cox proportional hazards model relies on the assumption of proportional hazards, which essentially means that the effect of the explanatory variables is constant over time. This can be assessed visually by plotting the model residuals, using `cox.zph` and the `ggcoxzph` function from the `survminer` package. Specifically, we will plot the scaled Schoenfeld (1982) residuals, which measure the difference between the observed covariates and the expected covariates given the risk at the time of an event. If the proportional hazards assumption holds, then there should be no trend over time for these residuals. Use the trend line to aid the eye:

```r
install.packages("survminer")
library(survminer)

ggcoxzph(cox.zph(m), var = 1) # age
ggcoxzph(cox.zph(m), var = 2) # sex

Formal p-values for a test of proportional hazards, for each variable:
cox.zph(m)
```

In this case, there are no apparent trends over time (which is in line with the corresponding formal hypothesis tests), indicating that the proportional hazards model could be applicable here.
Exercise 8.28. Consider the ovarian data from the survival package.

1. Use a Cox proportional hazards regression to test whether there is a difference between the two treatment groups, adjusted for age.
2. Compute bootstrap confidence interval for the hazard ratio of age.

Exercise 8.29. Consider the retinopathy data from the survival package. We are interested in a mixed survival model, where id is used to identify patients and type, trt, and age are fixed effects. Fit a mixed Cox proportional hazards regression (add cluster = id to the call to coxph to include this as a random effect). Is the assumption of proportional hazards fulfilled?

8.5.3 Accelerated failure time models

In many cases, the proportional hazards assumption does not hold. In such cases we can turn to accelerated failure time models (Wei, 1992), for which the effect of covariates is to accelerate or decelerate the life course of a subject.

While the proportional hazards model is semiparametric, accelerated failure time models are typically fully parametric, and thus involve stronger assumptions about an underlying distribution. When fitting such a model using the survreg function, we must therefore specify what distribution to use. Two common choices are the Weibull distribution and the log-logistic distribution. The Weibull distribution is commonly used in engineering, e.g. in reliability studies. The hazard function of Weibull models is always monotonic, i.e. either always increasing or always decreasing. In contrast, the log-logistic distribution allows the hazard function to be non-monotonic, making it more flexible, and often more appropriate for biological studies. Let’s fit both types of models to the lung data and have a look at the results:

```r
library(survival)

Fit Weibull model:
m_w <- survreg(Surv(time, status) ~ age + sex, data = lung,
 dist = "weibull", model = TRUE)
summary(m_w)

Fit log-logistic model:
m_ll <- survreg(Surv(time, status) ~ age + sex, data = lung,
 dist = "loglogistic", model = TRUE)
summary(m_ll)
```

Interpreting the coefficients of accelerated failure time models is easier than interpreting coefficients from proportional hazards models. The exponentiated coefficients show the relative increase or decrease in the expected survival times when a covariate is increased one step while all others are kept fixed:
In this case, according to the log-logistic model, the expected survival time decreases by 1.4% (i.e. multiply by 0.986) for each additional year that the patient has lived. The expected survival time for females (sex=2) is 61.2% higher than for males (multiply by 1.612).

To obtain bootstrap confidence intervals and p-values for the effects, we follow the same procedure as for the Cox model, using `censboot_summary`. Here is an example for the log-logistic accelerated failure time model:

```r
library(boot.pval)
Original coefficients:
censboot_summary(m_ll, type = "perc", coef = "raw")
Exponentiated coefficients:
censboot_summary(m_ll, type = "perc", coef = "exp")
```

We can also use `censboot`:

```r
Function to get the bootstrap replicates of the exponentiated coefficients:
boot_fun <- function(data, formula, distr) {
 m_boot <- survreg(formula, data = data, dist = distr)
 return(exp(coef(m_boot)))
}
Run the resampling:
library(boot)
boot_res <- censboot(lung[,c("time", "status", "age", "sex")],
 boot_fun, R = 999,
 formula =
 formula(Surv(time, status) ~ age + sex),
 distr = "loglogistic")

Compute the percentile bootstrap confidence intervals:
boot.ci(boot_res, type = "perc", index = 2) # Age
boot.ci(boot_res, type = "perc", index = 3) # Sex
```

**Exercise 8.30.** Consider the ovarian data from the survival package. Fit a log-logistic accelerated failure time model to the data, using all available explanatory variables. What is the estimated difference in survival times between the two treatment groups?
8.5.4 Bayesian survival analysis

At the time of this writing, the latest release of \texttt{rstanarm} does not contain functions for fitting survival analysis models. You can check whether this still is the case by running \texttt{?stan_surv} in the Console. If you don’t find the documentation for the \texttt{stan_surv} function, you will have to install the development version of the package from GitHub (which contains such functions), using the following code:

```r
Check if the devtools package is installed, and start
by installing it otherwise:
if (!require(devtools)) {
 install.packages("devtools")
}
library(devtools)

Download and install the development version of the package:
install_github("stan-dev/rstanarm", build_vignettes = FALSE)
```

Now, let’s have a look at how to fit a Bayesian model to the \texttt{lung} data from \texttt{survival}:

```r
library(survival)
library(rstanarm)

Fit proportional hazards model using cubic M-splines (similar
but not identical to the Cox model!):

m <- stan_surv(Surv(time, status) ~ age + sex, data = lung)

m
```

Fitting a survival model with a random effect works similarly, and uses the same syntax as \texttt{lme4}. Here is an example with the \texttt{retinopathy} data:

```r
m <- stan_surv(Surv(futime, status) ~ age + type + trt + (1|id),
 data = retinopathy)

m
```

8.5.5 Multivariate survival analysis

Some trials involve multiple time-to-event outcomes that need to be assessed simultaneously in a multivariate analysis. Examples includes studies of the time until each of several correlated symptoms or comorbidities occur. This is analogous to the multivariate testing problem of Section 7.2.6, but with right-censored data. To test for group differences for a vector of right-censored outcomes, a multivariate version of the logrank test described in Persson et al. (2019) can be used. It is available through the \texttt{MultSurvTests} package:

```r
install.packages("MultSurvTests")
```

As an example, we’ll use the \texttt{diabetes} dataset from \texttt{MultSurvTest}. It contains two
time-to-event outcomes: time until blindness in a treated eye and in an untreated eye.

```r
library(MultSurvTests)
Diabetes data:
?diabetes
```

We’ll compare two groups that received two different treatments. The survival times (time until blindness) and censoring statuses of the two groups are put in a matrices called `z` and `z.delta`, which are used as input for the test function `perm_mvlogrank`:

```r
Survival times for the two groups:
x <- as.matrix(subset(diabetes, LASER==1)[,c(6,8)])
y <- as.matrix(subset(diabetes, LASER==2)[,c(6,8)])

Censoring status for the two groups:
delta.x <- as.matrix(subset(diabetes, LASER==1)[,c(7,9)])
delta.y <- as.matrix(subset(diabetes, LASER==2)[,c(7,9)])

Create the input for the test:
z <- rbind(x, y)
delta.z <- rbind(delta.x, delta.y)

Run the test with 499 permutations:
perm_mvlogrank(B = 499, z, delta.z, n1 = nrow(x))
```

### 8.5.6 Power estimates for the logrank test

The `spower` function in Hmisc can be used to compute the power of the univariate logrank test in different scenarios using simulation. The helper functions `Weibull2`, `Lognorm2`, and `Gompertz2` can be used to define Weibull, lognormal and Gompertz distributions to sample from, using survival probabilities at different time points rather than the traditional parameters of those distributions. We’ll look at an example involving the Weibull distribution here. Additional examples can be found in the function’s documentation (`?spower`).

Let’s simulate the power of a 3-year follow-up study with two arms (i.e. two groups, control and intervention). First, we define a Weibull distribution for (compliant) control patients. Let’s say that their 1-year survival is 0.9 and their 3-year survival is 0.6. To define a Weibull distribution that corresponds to these numbers, we use `Weibull2` as follows:

```r
weib_dist <- Weibull2(c(1, 3), c(.9, .6))
```

We’ll assume that the treatment has no effect for the first 6 months, and that it then has a constant effect, leading to a hazard ratio of 0.75 (so the hazard ratio is 1 if the time in years is less than or equal to 0.5, and 0.75 otherwise). Moreover, we’ll
assume that there is a constant drop-out rate, such that 20% of the patients can be expected to drop out during the three years. Finally, there is no drop-in. We define a function to simulate survival times under these conditions:

```r
In the functions used to define the hazard ratio, drop-out
and drop-in, t denotes time in years:
sim_func <- Quantile2(weib_dist,
 hratio = function(t) { ifelse(t <= 0.5, 1, 0.75) },
 dropout = function(t) { 0.2*t/3 },
 dropin = function(t) { 0 })
```

Next, we define a function for the censoring distribution, which is assumed to be the same for both groups. Let’s say that each follow-up is done at a random time point between 2 and 3 years. We’ll therefore use a uniform distribution on the interval (2, 3) for the censoring distribution:

```r
cens <- function(n)
{
 runif(n, 2, 3)
}
```

Finally, we define two helper functions required by `spower` and then run the simulation study. The output is the simulated power using the settings that we’ve just created.

```r
Define helper functions:
rcontrol <- function(n) { sim_func(n, "control") }
rinterv <- function(n) { sim_func(n, "intervention") }

Simulate power when both groups have sample size 300:
spower(rcontrol, rinterv, cens, nc = 300, ni = 300,
 test = logrank, nsim = 999)

Simulate power when both groups have sample size 450:
spower(rcontrol, rinterv, cens, nc = 450, ni = 450,
 test = logrank, nsim = 999)

Simulate power when the control group has size 100
and the intervention group has size 300:
spower(rcontrol, rinterv, cens, nc = 100, ni = 300,
 test = logrank, nsim = 999)
```
8.6 Left-censored data and nondetects

Survival data is typically right-censored. Left-censored data, on the other hand, is common in medical research (e.g. in biomarker studies) and environmental chemistry (e.g. measurements of chemicals in water), where some measurements fall below the laboratory’s detection limits (or limit of detection, LoD). Such data also occur in studies in economics. A measurement below the detection limit, a nondetect, is still more informative than having no measurement at all - we may not know the exact value, but we know that the measurement is below a given threshold.

In principle, all methods that are applicable to survival analysis can also be used for left-censored data (although the interpretation of coefficients and parameters may differ), but in practice the distributions of lab measurements and economic variables often differ from those that typically describe survival times. In this section we’ll look at methods tailored to the kind of left-censored data that appears in applications in the aforementioned fields.

8.6.1 Estimation

The EnvStats package contains a number of functions that can be used to compute descriptive statistics and estimating parameters of distributions from data with nondetects. Let’s install it:

```
install.packages("EnvStats")
```

Estimates of the mean and standard deviation of a normal distribution that take the censoring into account in the right way can be obtained with `enormCensored`, which allows us to use several different estimators (the details surrounding the available estimators can be found using `?enormCensored`). Analogous functions are available for other distributions, for instance `elnormAltCensored` for the lognormal distribution, `egammaCensored` for the gamma distribution, and `epoisCensored` for the Poisson distribution.

To illustrate the use of `enormCensored`, we will generate data from a normal distribution. We know the true mean and standard deviation of the distribution, and can compute the estimates for the generated sample. We will then pretend that there is a detection limit for this data, and artificially left-censor about 20 % of it. This allows us to compare the estimates for the full sample and the censored sample, to see how the censoring affects the estimates. Try running the code below a few times:

```
Generate 50 observations from a N(10, 9)-distribution:
x <- rnorm(50, 10, 3)

Estimate the mean and standard deviation:
mean_full <- mean(x)
sd_full <- sd(x)
```
# Censor all observations below the "detection limit" 8
# and replace their values by 8:
censored <- x<8
x[censored] <- 8

# The proportion of censored observations is:
mean(censored)

# Estimate the mean and standard deviation in a naive
# manner, using the ordinary estimators with all
# nondetects replaced by 8:
mean_cens_naive <- mean(x)
sd_cens_naive <- sd(x)

# Estimate the mean and standard deviation using
# different estimators that take the censoring
# into account:

library(EnvStats)

# Maximum likelihood estimate:
estimates_mle <- enormCensored(x, censored,
method = "mle")

# Biased-corrected maximum likelihood estimate:
estimates_bcmle <- enormCensored(x, censored,
method = "bcmle")

# Regression on order statistics, ROS, estimate:
estimates_ros <- enormCensored(x, censored,
method = "ROS")

# Compare the different estimates:
mean_full; sd_full
mean_cens_naive; sd_cens_naive
estimates_mle$parameters
estimates_bcmle$parameters
estimates_ros$parameters

The naive estimators tend to be biased for data with nondetects (sometimes very biased!). Your mileage may vary depending on e.g. the sample size and the amount of censoring, but in general, the estimators that take censoring into account will fare much better.

After we have obtained estimates for the parameters of the normal distribution, we can plot the data against the fitted distribution to check the assumption of normality:
library(ggplot2)
# Compare to histogram, including a bar for nondetects:
ggplot(data.frame(x), aes(x)) +
  geom_histogram(colour = "black", aes(y = ..density..)) +
  geom_function(fun = dnorm, colour = "red", size = 2,
                args = list(mean = estimates_mle$parameters[1],
                             sd = estimates_mle$parameters[2])))

# Compare to histogram, excluding nondetects:
x_noncens <- x[!censored]
ggplot(data.frame(x_noncens), aes(x_noncens)) +
  geom_histogram(colour = "black", aes(y = ..density..)) +
  geom_function(fun = dnorm, colour = "red", size = 2,
                args = list(mean = estimates_mle$parameters[1],
                             sd = estimates_mle$parameters[2])))

To obtain percentile and BCa bootstrap confidence intervals for the mean, we can add the options `ci = TRUE` and `ci.method = "bootstrap"`:

# Using 999 bootstrap replicates:
enormCensored(x, censored, method = "mle",
              ci = TRUE, ci.method = "bootstrap",
              n.bootstraps = 999)$interval$limits

Exercise 8.31. Download the `il2rb.csv` data from the book’s web page. It contains measurements of the biomarker IL-2RB made in serum samples from two groups of patients. The values that are missing are in fact nondetects, with detection limit 0.25.

Under the assumption that the biomarker levels follow a lognormal distribution, compute bootstrap confidence intervals for the mean of the distribution for the control group. What proportion of the data is left-censored?

8.6.2 Tests of means

When testing the difference between two groups’ means, nonparametric tests like the Wilcoxon-Mann-Whitney test often perform very well for data with nondetects, unlike the t-test (Zhang et al., 2009). For data with a high degree of censoring (e.g. more than 50 %), most tests perform poorly. For multivariate tests of mean vectors the situation is the opposite, with Hotelling’s $T^2$ (Section 7.2.6) being a much better option than nonparametric tests (Thulin, 2016).
Exercise 8.32. Return to the il2rb.csv data from Exercise 8.32. Test the hypothesis that there is no difference in location between the two groups.

8.6.3 Censored regression

Censored regression models can be used when the response variable is censored. A common model in economics is the Tobit regression model (Tobin, 1958), which is a linear regression model with normal errors, tailored to left-censored data. It can be fitted using `survreg`.

As an example, consider the EPA.92c.zinc.df dataset available in EnvStats. It contains measurements of zinc concentrations from five wells, made on 8 samples from each well, half of which are nondetects. Let’s say that we are interested in comparing these five wells (so that the wells aren’t random effects). Let’s also assume that the 8 samples were collected at different time points, and that we want to investigate whether the concentrations change over time. Such changes could be non-linear, so we’ll include the sample number as a factor. To fit a Tobit model to this data, we use `survreg` as follows.

```r
library(EnvStats)
?EPA.92c.zinc.df

Note that in Surv, in the vector describing censoring 0 means censoring and 1 no censoring. This is the opposite of the definition used in EPA.92c.zinc.df$Censored, so we use the ! operator to change 0's to 1's and vice versa.
library(survival)
m <- survreg(Surv(Zinc, !Censored, type = "left") ~ Sample + Well, data = EPA.92c.zinc.df, dist = "gaussian")
summary(m)

Similarly, we can fit a model under the assumption of lognormality:

```r
m <- survreg(Surv(Zinc, !Censored, type = "left") ~ Sample + Well, data = EPA.92c.zinc.df, dist = "lognormal")
summary(m)
```

Fitting regression models where the explanatory variables are censored is more challenging. For prediction, a good option is models based on decision trees, studied in Section 9.5. For testing whether there is a trend over time, tests based on Kendall’s correlation coefficient can be useful. EnvStats provides two functions for this - `kendallTrendTest` for testing a monotonic trend, and `kendallSeasonalTrendTest` for testing a monotonic trend within seasons.
8.7 Creating matched samples

Matching is used to balance the distribution of explanatory variables in the groups that are being compared. This is often required in observational studies, where the treatment variable is not randomly assigned, but determined by some external factor(s) that may be related to the treatment. For instance, if you wish to study the effect of smoking on mortality, you can recruit a group of smokers and non-smokers and follow them for a few years. But both mortality and smoking are related to confounding variables such as age and gender, meaning that imbalances in the age and gender distributions of smokers and non-smokers can bias the results. There are several methods for creating balanced or matched samples that seek to mitigate this bias, including propensity score matching, which we’ll use here. The MatchIt and optmatch packages contain the functions that we need for this.

To begin with, let’s install the two packages:

```r
install.packages(c("MatchIt", "optmatch"))
```

We will illustrate the use of the packages using the lalonde dataset, that is shipped with the MatchIt package:

```r
library(MatchIt)
data(lalonde)
?lalonde
View(lalonde)
```

Note that the data has row names, which are useful e.g. for identifying which individuals have been paired - we can access them using `rownames(lalonde)`.

8.7.1 Propensity score matching

To perform automated propensity score matching, we will use the `matchit` function, which computes propensity scores and then matches participants from the treatment and control groups using these. Matches can be found in several ways. We’ll consider two of them here. As input, the `matchit` function takes a formula describing the treatment variable and potential confounders, what datasets to use, which method to use and what ratio of control to treatment participants to use.

A common method is nearest neighbour matching, where each participant is matched to the participant in the other group with the most similar propensity score. By default, it starts by finding a match for the participant in the treatment group that has the largest propensity score, then finds a match for the participant in the treatment groups with the second largest score, and so on. Two participants cannot be matched with the same participant in the control group. The nearest neighbour match is locally optimal in the sense that it find the best (still) available match for each participant in the treatment group, ignoring if that match in fact would be even better for another participant in the treatment group.
To perform propensity score matching using nearest neighbour matching with 1 match each, evaluate the results and then extract the matched samples we can use `matchit` as follows:

```r
matches <- matchit(treat ~ re74 + re75 + age + educ + married, 
                   data = lalonde, method = "nearest", ratio = 1)

summary(matches)
plot(matches)
plot(matches, type = "hist")

matched_data <- match.data(matches)
summary(matched_data)
```

To view the matched pairs, you can use:

```r
matches$match.matrix
```

To view the values of the `re78` variable of the matched pairs, use:

```r
varName <- "re78"
resMatrix <- lalonde[row.names(matches$match.matrix), varName]
for(i in 1:ncol(matches$match.matrix))
{
  resMatrix <- cbind(resMatrix, lalonde[matches$match.matrix[,i], varName])
}
rownames(resMatrix) <- row.names(matches$match.matrix)
View(resMatrix)
```

As an alternative to nearest neighbour-matching, *optimal matching* can be used. This is similar to nearest neighbour-matching, but strives to obtain *globally optimal* matches rather than locally optimal. This means that each participant in the treatment group is paired with a participant in the control group, while also taking into account how similar the latter participant is to other participants in the treatment group.

To perform propensity score matching using optimal matching with 2 matches each:

```r
matches <- matchit(treat ~ re74 + re75 + age + educ + married, 
                   data = lalonde, method = "optimal", ratio = 2)

summary(matches)
plot(matches)
plot(matches, type = "hist")

matched_data <- match.data(matches)
```
You may also want to find all controls that match participants in the treatment group exactly. This is called exact matching:

```r
matches <- matchit(treat ~ re74 + re75 + age + educ + married,
                   data = lalonde, method = "exact")
```

```
summary(matches)
plot(matches)
plot(matches, type = "hist")
```

```r
matched_data <- match.data(matches)
```

```
summary(matched_data)
```

Participants with no exact matches won’t be included in `matched_data`.

8.7.2 Stepwise matching

At times you will want to combine the above approaches. For instance, you may want to have an exact match for age, and then an approximate match using the propensity scores for other variables. This is also achievable but requires the matching to be done in several steps. To first match the participant exactly on age and then 1-to-2 via nearest-neighbour propensity score matching on `re74` and `re75` we can use a loop:

```r
# Match exactly one age:
matches <- matchit(treat ~ age, data = lalonde, method = "exact")
matched_data <- match.data(matches)

# Match the first subclass 1-to-2 via nearest-neighbour propensity score matching:
matches2 <- matchit(treat ~ re74 + re75,
                   data = matched_data[matched_data$subclass == 1,],
                   method = "nearest", ratio = 2)
matched_data2 <- match.data(matches2, weights = "weights2",
                           subclass = "subclass2")
matchlist <- matches2$match.matrix

# Match the remaining subclasses in the same way:
for(i in 2:max(matched_data$subclass)) {
  matches2 <- matchit(treat ~ re74 + re75,
                       data = matched_data[matched_data$subclass == i,],
                       method = "nearest", ratio = 2)
  matched_data[i] <- match.data(matches2, weights = "weights2",
                                subclass = "subclass2")
}
```
8.7. CREATING MATCHED SAMPLES

```r
matched_data2 <- rbind(matched_data2, match.data(matches2,
    weights = "weights2",
    subclass = "subclass2"))

matchlist <- rbind(matchlist, matches2$match.matrix)
}

# Check results:
View(matchlist)
View(matched_data2)
```
Chapter 9

Predictive modelling and machine learning

In predictive modelling, we fit statistical models that use historical data to make predictions about future (or unknown) outcomes. This practice is a cornerstone of modern statistics, and includes methods ranging from classical parametric linear regression to black-box machine learning models.

After reading this chapter, you will be able to use R to:

• Fit predictive models for regression and classification,
• Evaluate predictive models,
• Use cross-validation and the bootstrap for out-of-sample evaluations,
• Handle imbalanced classes in classification problems,
• Fit regularised (and possibly also generalised) linear models, e.g. using the lasso,
• Fit a number of machine learning models, including kNN, decision trees, random forests, and boosted trees.
• Make forecasts based on time series data.

9.1 Evaluating predictive models

In many ways, modern predictive modelling differs from the more traditional inference problems that we studied in the previous chapter. The goal of predictive modelling is (usually) not to test whether some variable affects another or to study causal relationships. Instead, our only goal is to make good predictions. It is little surprise then that the tools we use to evaluate predictive models differ from those used to evaluate models used for other purposes, like hypothesis testing. In this section, we will have a look at how to evaluate predictive models.
The terminology used in predictive modelling differs a little from that used in traditional statistics. For instance, explanatory variables are often called features or predictors, and predictive modelling is often referred to as supervised learning. We will stick with the terms used in Section 7, to keep the terminology consistent within the book.

Predictive models can be divided into two categories:

- **Regression**, where we want to make predictions for a numeric variable,
- **Classification**, where we want to make predictions for a categorical variable.

There are many similarities between these two, but we need to use different measures when evaluating their predictive performance. Let’s start with models for numeric predictions, i.e. regression models.

9.1.1 Evaluating regression models

Let’s return to the `mtcars` data that we studied in Section 8.1. There, we fitted a linear model to explain the fuel consumption of cars:

```r
m <- lm(mpg ~ ., data = mtcars)
```

(Recall that the formula `mpg ~ .` means that all variables in the dataset, except `mpg`, are used as explanatory variables in the model.)

A number of measures of how well the model fits the data have been proposed. Without going into details (it will soon be apparent why), we can mention examples like the coefficient of determination R^2, and information criteria like AIC and BIC. All of these are straightforward to compute for our model:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>summary(m)$r.squared</code></td>
<td>R^2</td>
</tr>
<tr>
<td><code>summary(m)$adj.r.squared</code></td>
<td>Adjusted R^2</td>
</tr>
<tr>
<td><code>AIC(m)</code></td>
<td>AIC</td>
</tr>
<tr>
<td><code>BIC(m)</code></td>
<td>BIC</td>
</tr>
</tbody>
</table>

R^2 is a popular tool for assessing model fit, with values close to 1 indicating a good fit and values close to 0 indicating a poor fit (i.e. that most of the variation in the data isn’t accounted for).

It is nice if our model fits the data well, but what really matters in predictive modelling is how close the predictions from the model are to the truth. We therefore need ways to measure the distance between predicted values and observed values - ways to measure the size of the average prediction error. A common measure is the root-mean-square error (RMSE). Given n observations $y_1, y_2, ..., y_n$ for which our model makes the predictions $\hat{y}_1, ..., \hat{y}_n$, this is defined as

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n}(\hat{y}_i - y_i)^2}{n}},$$
9.1. EVALUATING PREDICTIVE MODELS

that is, as the named implies, the square root of the mean of the squared errors
\((\hat{y}_i - y_i)^2\).

Another common measure is the mean absolute error (MAE):

\[
MAE = \frac{\sum_{i=1}^{n} |\hat{y}_i - y_i|}{n}.
\]

Let’s compare the predicted values \(\hat{y}_i\) to the observed values \(y_i\) for our mtcars model:

```r
rmse <- sqrt(mean((predict(m) - mtcars$mpg)^2))
mae <- mean(abs(predict(m) - mtcars$mpg))
rmse; mae
```

There is a problem with this computation, and it is a big one. What we just computed was the difference between predicted values and observed values for the sample that was used to fit the model. This doesn’t necessarily tell us anything about how well the model will fare when used to make predictions about new observations. It is, for instance, entirely possible that our model has overfitted to the sample, and essentially has learned the examples therein by heart, ignoring the general patterns that we were trying to model. This would lead to a small RMSE and MAE, and a high \(R^2\), but would render the model useless for predictive purposes.

All the computations that we’ve just done - \(R^2\), AIC, BIC, RMSE and MAE - were examples of in-sample evaluations of our model. There are a number of problems associated with in-sample evaluations, all of which have been known for a long time - see e.g. Picard & Cook (1984). In general, they tend to be overly optimistic and overestimate how well the model will perform for new data. It is about time that we got rid of them for good.

A fundamental principle of predictive modelling is that the model chiefly should be judged on how well it makes predictions for new data. To evaluate its performance, we therefore need to carry out some form of out-of-sample evaluation, i.e. to use the model to make predictions for new data (that weren’t used to fit the model). We can then compare those predictions to the actual observed values for those data, and e.g. compute the RMSE or MAE to measure the size of the average prediction error. Out-of-sample evaluations, when done right, are less overoptimistic than in-sample evaluations, and are also better in the sense that they actually measure the right thing.

Exercise 9.1. To see that a high \(R^2\) and low p-values say very little about the predictive performance of a model, consider the following dataset with 30 randomly generated observations of four variables:
A common (mal)practice is to remove explanatory variables that aren’t significant from a linear model (see Section 8.1.9 for some comments on this). Remove any variables from the regression model with a p-value above 0.05, and refit the model using the first 20 observations. Do the p-values and R^2 indicate a good fit? Do the predictions for the remaining 10 observations improve?

5. Finally, fit a model with x_1, x_2 and $x_3 \cdot x_2$ as explanatory variables (i.e. a correctly specified model) to the first 20 observations. Do the predictions for the remaining 10 observations improve?

9.1.2 Test-training splits

In some cases, our data is naturally separated into two sets, one of which can be used to fit a model and the other to evaluate it. A common example of this is when data has been collected during two distinct time periods, and the older data is used to fit a model that is evaluated on the newer data, to see if historical data can be used to predict the future.

In most cases though, we don’t have that luxury. A popular alternative is to artificially create two sets by randomly withdrawing a part of the data, 10% or 20% say, which can be used for evaluation. In machine learning lingo, model fitting is known as training and model evaluation as testing. The set used for training (fitting) the

```r
exdata <- data.frame(x1 = c(0.87, -1.03, 0.02, -0.25, -1.09, 0.74, 0.09, -1.64, -0.32, -0.33, 1.40, 0.29, -0.71, 1.36, 0.64, -0.78, -0.58, 0.67, -0.90, -1.52, -0.11, -0.65, 0.04, -0.72, 1.71, -1.58, -1.76, 2.10, 0.81, -0.30),
x2 = c(1.38, 0.14, 1.46, 0.27, -1.02, -1.94, 0.12, -0.64, 0.64, -0.39, 0.28, 0.50, -1.29, 0.52, 0.28, 0.23, 0.05, 3.10, 0.84, -0.66, -1.35, -0.06, -0.66, 0.40, -0.23, -0.97, -0.78, 0.38, 0.49, 0.21),
x3 = c(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1),
y = c(3.47, -0.80, 4.57, 0.16, -1.77, -6.84, 1.28, -0.52, 1.00, -2.50, -1.99, 1.13, -4.26, 1.16, -0.69, 0.89, -1.01, 7.56, 2.33, 0.36, -1.11, -0.53, -1.44, -0.43, 0.69, -2.30, -3.55, 0.99, -0.50, -1.67)
```

1. The true relationship between the variables, used to generate the y variables, is $y = 2x_1 - x_2 + x_3 \cdot x_2$. Plot the y values in the data against this expected value. Does a linear model seem appropriate?
2. Fit a linear regression model with x_1, x_2 and x_3 as explanatory variables (without any interactions) using the first 20 observations of the data. Do the p-values and R^2 indicate a good fit?
3. Make predictions for the remaining 10 observations. Are the predictions accurate?
4. A common (mal)practice is to remove explanatory variables that aren’t significant from a linear model (see Section 8.1.9 for some comments on this). Remove any variables from the regression model with a p-value above 0.05, and refit the model using the first 20 observations. Do the p-values and R^2 indicate a good fit? Do the predictions for the remaining 10 observations improve?
model is therefore often referred to as the training data, and the set used for testing (evaluating) the model is known as the test data.

Let’s try this out with the mtcars data. We’ll use 80% of the data for fitting our model and 20% for evaluating it.

```r
# Set the sizes of the test and training samples.
# We use 20% of the data for testing:
ntest <- nrow(mtcars)
ntest <- round(0.2*n)
ntest <- n - ntest

# Split the data into two sets:
train_rows <- sample(1:n, ntrain)
mtcars_train <- mtcars[train_rows,]
mtcars_test <- mtcars[-train_rows,]
```

In this case, our training set consists of 26 observations and our test set of 6 observations. Let’s fit the model using the training set and use the test set for evaluation:

```r
# Fit model to training set:
m <- lm(mpg ~ ., data = mtcars_train)

# Evaluate on test set:
rmse <- sqrt(mean((predict(m, mtcars_test) - mtcars_test$mpg)^2))
mae <- mean(abs(predict(m, mtcars_test) - mtcars_test$mpg))
rmse; mae
```

Because of the small sample sizes here, the results can vary a lot if you rerun the two code chunks above several times (try it!). When I ran them ten times, the RMSE varied between 1.8 and 7.6 - quite a difference on the scale of mpg! This problem is usually not as pronounced if you have larger sample sizes, but even for fairly large datasets, there can be a lot of variability depending on how the data happens to be split. It is not uncommon to get a “lucky” or “unlucky” test set that either overestimates or underestimates the model’s performance.

In general, I’d therefore recommend that you only use test-training splits of your data as a last resort (and only use it with sample sizes of 10,000 or more). Better tools are available in the form of the bootstrap and its darling cousin, cross-validation.

9.1.3 Leave-one-out cross-validation and caret

The idea behind cross-validation is similar to that behind test-training splitting of the data. We partition the data into several sets, and use one of them for evaluation. The key difference is that we in a cross-validation partition the data into more than two sets, and use all of them (one-by-one) for evaluation.
To begin with, we split the data into k sets, where k is equal to or less than the number of observations n. We then put the first set aside, to use for evaluation, and fit the model to the remaining $k - 1$ sets. The model predictions are then evaluated on the first set. Next, we put the first set back among the others and remove the second set to use that for evaluation. And so on. This means that we fit k models to k different (albeit similar) training sets, and evaluate them on k test sets (none of which are used for fitting the model that is evaluated on them).

The most basic form of cross-validation is leave-one-out cross-validation (LOOCV), where $k = n$ so that each observation is its own set. For each observation, we fit a model using all other observations, and then compare the prediction of that model to the actual value of the observation. We can do this using a `for` loop (Section 6.4.1) as follows:

```r
# Leave-one-out cross-validation:
pred <- vector("numeric", nrow(mtcars))
for(i in 1:nrow(mtcars))
{
  # Fit model to all observations except observation i:
  m <- lm(mpg ~ ., data = mtcars[-i,])
  # Make a prediction for observation i:
  pred[i] <- predict(m, mtcars[i,])
}

# Evaluate predictions:
rmse <- sqrt(mean((pred - mtcars$mpg)^2))
mae <- mean(abs(pred - mtcars$mpg))
rmse; mae
```

We will use cross-validation a lot, and so it is nice not to have to write a lot of code each time we want to do it. To that end, we’ll install the `caret` package, which not only lets us do cross-validation, but also acts as a wrapper for a large number of packages for predictive models. That means that we won’t have to learn a ton of functions to be able to fit different types of models. Instead, we just have to learn a few functions from `caret`. Let’s install the package and some of the packages it needs to function fully:

```r
install.packages("caret", dependencies = TRUE)
```

Now, let’s see how we can use `caret` to fit a linear regression model and evaluate it using cross-validation. The two main functions used for this are `trainControl`, which we use to say that we want to perform a leave-one-out cross-validation (method = "LOOCV") and `train`, where we state the model formula and specify that we want to use `lm` for fitting the model:
library(caret)
tc <- trainControl(method = "LOOCV")
m <- train(mpg ~ .,
 data = mtcars,
 method = "lm",
 trControl = tc)

train has now done several things in parallel. First of all, it has fitted a linear model to the entire dataset. To see the results of the linear model we can use summary, just as if we’d fitted it with lm:

summary(m)

Many, but not all, functions that we would apply to an object fitted using lm still work fine with a linear model fitted using train, including predict. Others, like coef and confint no longer work (or work differently) - but that is not that big a problem. We only use train when we are fitting a linear regression model with the intent of using it for prediction - and in such cases, we are typically not interested in the values of the model coefficients or their confidence intervals. If we need them, we can always refit the model using lm.

What makes train great is that m also contains information about the predictive performance of the model, computed, in this case, using leave-one-out cross-validation:

Print a summary of the cross-validation:
m

Extract the measures:
m$results

~

Exercise 9.2. Download the estates.xlsx data from the book’s web page. It describes the selling prices (in thousands of SEK) of houses in and near Uppsala, Sweden, along with a number of variables describing the location, size, and standard of the house.

Fit a linear regression model to the data, with selling_price as the response variable and the remaining variables as explanatory variables. Perform an out-of-sample evaluation of your model. What are the RMSE and MAE? Do the prediction errors seem acceptable?

9.1.4 k-fold cross-validation

LOOCV is a very good way of performing out-of-sample evaluation of your model. It can however become overoptimistic if you have “twinned” or duplicated data in
your sample, i.e. observations that are identical or nearly identical (in which case the model for all intents and purposes already has “seen” the observation for which it is making a prediction). It can also be quite slow if you have a large dataset, as you need to fit n different models, each using a lot of data.

A much faster option is k-fold cross-validation, which is the name for cross-validation where k is lower than n - usually much lower, with $k = 10$ being a common choice. To run a 10 fold cross-validation with `caret`, we change the arguments of `trainControl`, and then run `train` exactly as before:

```r
tc <- trainControl(method = "cv", number = 10)
m <- train(mpg ~ ., data = mtcars, method = "lm", trControl = tc)
```

Like with test-training splitting, the results from a k-fold cross-validation will vary each time it is run (unless $k = n$). To reduce the variance of the estimates of the prediction error, we can repeat the cross-validation procedure multiple times, and average the errors from all runs. This is known as a repeated k-fold cross-validation. To run 100 10-fold cross-validations, we change the settings in `trainControl` as follows:

```r
tc <- trainControl(method = "repeatedcv", number = 10, repeats = 100)
m <- train(mpg ~ ., data = mtcars, method = "lm", trControl = tc)
```

Repeated k-fold cross-validations are more computer-intensive than simple k-fold cross-validations, but in return the estimates of the average prediction error are much more stable.

Which type of cross-validation to use for different problems remains an open question. Several studies (e.g. Zhang & Yang (2015), and the references therein) indicate that in most settings larger k is better (with LOOCV being the best), but there are exceptions to this rule - e.g. when you have a lot of twinned data. This is in contrast to an older belief that a high k leads to estimates with high variances, tracing its roots back to a largely unsubstantiated claim in Efron (1983), which you still can see repeated in many books. When n is very large, the difference between different k is typically negligible.
A downside to \(k \)-fold cross-validation is that the model is fitted using \(\frac{k-1}{k}n \) observations instead of \(n \). If \(n \) is small, this can lead to models that are noticeably worse than the model fitted using \(n \) observations. LOOCV is the best choice in such cases, as it uses \(n - 1 \) observations (so, almost \(n \)) when fitting the models. On the other hand, there is also the computational aspect - LOOCV is simply not computationally feasible for large datasets with numerically complex models. In summary, my recommendation is to use LOOCV when possible, particularly for smaller datasets, and to use repeated 10-fold cross-validation otherwise. For very large datasets, or toy examples, you can resort to a simple 10-fold cross-validation (which still is a better option than test-training splitting).

Exercise 9.3. Return to the estates.xlsx data from the previous exercise. Refit your linear model, but this time:

1. Use 10-fold cross-validation for the evaluation. Run it several times and check the MAE. How much does the MAE vary between runs?

2. Run repeated 10-fold cross-validations a few times. How much does the MAE vary between runs?

9.1.5 Twinned observations

If you want to use LOOCV but are concerned about twinned observations, you can use\texttt{duplicated}, which returns a logical vector showing which rows are duplicates of previous rows. It will however not find near-duplicates. Let’s try it on the \texttt{diamonds} data from \texttt{ggplot2}:

```r
library(ggplot2)
# Are there twinned observations?
duplicated(diamonds)

# Count the number of duplicates:
sum(duplicated(diamonds))

# Show the duplicates:
diamonds[which(duplicated(diamonds)),]
```

If you plan on using LOOCV, you may want to remove duplicates. We saw how to do this in Section 5.8.2:

```r
With data.table:
library(data.table)
diamonds <- as.data.table(diamonds)
unique(diamonds)
```
9.1.6 Bootstrapping

An alternative to cross-validation is to draw bootstrap samples, some of which are used to fit models, and some to evaluate them. This has the benefit that the models are fitted to \(n \) observations instead of \(\frac{k-1}{k} n \) observations. This is in fact the default method in \texttt{trainControl}. To use it for our \texttt{mtcars} model, with 999 bootstrap samples, we run the following:

```r
library(caret)
tc <- trainControl(method = "boot",
                   number = 999)
m <- train(mpg ~ .,
        data = mtcars,
        method = "lm",
        trControl = tc)
m$m$results
```

Exercise 9.4. Return to the \texttt{estates.xlsx} data from the previous exercise. Refit your linear model, but this time use the bootstrap to evaluate the model. Run it several times and check the MAE. How much does the MAE vary between runs?

9.1.7 Evaluating classification models

Classification models, or classifiers, differ from regression model in that they aim to predict which class (category) an observation belongs to, rather than to predict a number. Because the target variable, the class, is categorical, it would make little sense to use measures like \(\text{RMSE} \) and \(\text{MAE} \) to evaluate the performance of a classifier. Instead, we will use other measures that are better suited to this type of problem.

To begin with, though, we’ll revisit the \texttt{wine} data that we studied in Section 8.3.1. It contains characteristics of wines that belong to either of two classes: white and red. Let’s create the dataset:

```r
# Import data about white and red wines:
white <- read.csv("https://tinyurl.com/winedata1",
              sep = ";")
```
red <- read.csv("https://tinyurl.com/winedata2",
 sep = ";")

Add a type variable:
white$type <- "white"
red$type <- "red"

Merge the datasets:
wine <- rbind(white, red)
wine$type <- factor(wine$type)

Check the result:
summary(wine)

In Section 8.3.1, we fitted a logistic regression model to the data using glm:

m <- glm(type ~ pH + alcohol, data = wine, family = binomial)
summary(m)

Logistic regression models are regression models, because they give us a numeric output: class probabilities. These probabilities can however be used for classification - we can for instance classify a wine as being red if the predicted probability that it is red is at least 0.5. We can therefore use logistic regression as a classifier, and refer to it as such, although we should bear in mind that it actually is more than that.

We can use caret and train to fit the same a logistic regression model, and use cross-validation or the bootstrap to evaluate it. We should supply the arguments method = "glm" and family = "binomial" to train to specify that we want a logistic regression model. Let’s do that, and run a repeated 10-fold cross-validation of the model - this takes longer to run than our mtcars example because the dataset is larger:

library(caret)
tc <- trainControl(method = "repeatedcv",
 number = 10, repeats = 100)
m <- train(type ~ pH + alcohol,
 data = wine,
 trControl = tc,
 method = "glm",
 family = "binomial")

m

The summary reports two figures from the cross-validation:

1 Many, but not all, classifiers also output predicted class probabilities. The distinction between regression models and classifiers is blurry at best.
• **Accuracy:** the proportion of correctly classified observations,

• **Cohen’s kappa:** a measure combining the observed accuracy with the accuracy expected under random guessing (which is related to the balance between the two classes in the sample).

We mentioned a little earlier that we can use logistic regression for classification by, for instance, classifying a wine as being red if the predicted probability that it is red is at least 0.5. It is of course possible to use another threshold as well, and classify wines as being red if the probability is at least 0.2, or 0.3333, or 0.62. When setting this threshold, there is a tradeoff between the occurrence of what is known as false negatives and false positives. Imagine that we have two classes (white and red), and that we label one of them as negative (white) and one as positive (red). Then:

• A **false negative** is a positive (red) observation incorrectly classified as negative (white),

• A **false positive** is a negative (white) observation incorrectly classified as positive (red).

In the wine example, there is little difference between these types of errors. But in other examples, the distinction is an important one. Imagine for instance that we, based on some data, want to classify patients as being sick (positive) or healthy (negative). In that case it might be much worse to get a false negative (the patient won’t get the treatment that they need) than a false positive (which just means that the patient will have to run a few more tests). For any given threshold, we can compute two measures of the frequency of these types of errors:

• **Sensitivity** or **true positive rate:** the proportion of positive observations that are correctly classified as being positive,

• **Specificity** or **true negative rate:** the proportion of negative observations that are correctly classified as being negative.

If we increase the threshold for at what probability a wine is classified as being red (positive), then the sensitivity will increase, but the specificity will decrease. And if we lower the threshold, the sensitivity will decrease while the specificity increases.

It would make sense to try several different thresholds, to see for which threshold we get a good compromise between sensitivity and specificity. We will use the MLeval package to visualise the result of this comparison, so let’s install that:

```r
install.packages("MLeval")
```

Sensitivity and specificity are usually visualised using receiver operation characteristic curves, or **ROC curves** for short. We’ll plot such a curve for our wine model. The function `evalm` from MLeval can be used to collect the data that we need from the cross-validations of a model `m` created using `train`. To use it, we need to set `savePredictions = TRUE` and `classProbs = TRUE` in `trainControl`:
9.1. EVALUATING PREDICTIVE MODELS

```r
tc <- trainControl(method = "repeatedcv",
                   number = 10, repeats = 100,
                   savePredictions = TRUE,
                   classProbs = TRUE)

m <- train(type ~ pH + alcohol,
           data = wine,
           trControl = tc,
           method = "glm",
           family = "binomial")

library(MLeval)
plots <- evalm(m)

# ROC:
plots$roc
```

The x-axis shows the false positive rate of the classifier (which is 1 minus the specificity - we’d like this to be as low as possible) and the y-axis shows the corresponding sensitivity of the classifier (we’d like this to be as high as possible). The red line shows the false positive rate and sensitivity of our classifier, which each point on the line corresponding to a different threshold. The grey line shows the performance of a classifier that is no better than random guessing - ideally, we want the red line to be much higher than that.

The beauty of the ROC curve is that it gives us a visual summary of how the classifier performs for all possible thresholds. It is instrumental if we want to compare two or more classifiers, as you will do in Exercise 9.5.

The legend shows a summary measure, AUC, the area under the ROC curve. An AUC of 0.5 means that the classifier is no better than random guessing, and an AUC of 1 means that the model always makes correct predictions for all thresholds. Getting an AUC that is lower than 0.5, meaning that the classifier is worse than random guessing, is exceedingly rare, and can be a sign of some error in the model fitting.

`evalm` also computes a 95% confidence interval for the AUC, which can be obtained as follows:

```r
plots$optres[[1]][[13],]
```

Another very important plot provided by `evalm` is the calibration curve. It shows how well-calibrated the model is. If the model is well-calibrated, then the predicted probabilities should be close to the true frequencies. As an example, this means that among wines for which the predicted probability of the wine being red is about 20%, 20% should actually be red. For a well-calibrated model, the red curve should
closely follow the grey line in the plot:

```r
# Calibration curve:
plots$cc
```

Our model doesn’t appear to be that well-calibrated, meaning that we can’t really trust its predicted probabilities.

If we just want to quickly print the \(AUC \) without plotting the ROC curves, we can set `summaryFunction = twoClassSummary` in `trainControl`, after which the \(AUC \) will be printed instead of accuracy and Cohen’s kappa (although it is erroneously called ROC instead of \(AUC \)). The sensitivity and specificity for the 0.5 threshold are also printed:

```r
tc <- trainControl(
  method = "repeatedcv",
  number = 10, repeats = 100,
  summaryFunction = twoClassSummary,
  savePredictions = TRUE,
  classProbs = TRUE)
```

```r
m <- train(type ~ pH + alcohol,
  data = wine,
  trControl = tc,
  method = "glm",
  family = "binomial",
  metric = "ROC")
m
```

Exercise 9.5. Fit a second logistic regression model, \(m_2 \), to the `wine` data, that also includes `fixed.acidity` and `residual.sugar` as explanatory variables. You can then run

```r
library(MLeval)
plots <- evalm(list(m, m2),
  gnames = c("Model 1", "Model 2"))
```

to create ROC curves and calibration plots for both models. Compare their curves. Is the new model better than the simpler model?

9.1.8 Visualising decision boundaries

For models with two explanatory variables, the decision boundaries of a classifier can easily be visualised. These show the different regions of the sample space that the
classifier associates with the different classes. Let’s look at an example of this using the model \(m \) fitted to the wine data at the end of the previous section. We’ll create a grid of points using `expand.grid` and make predictions for each of them (i.e. classify each of them). We can then use `geom_contour` to draw the decision boundaries:

```r
contour_data <- expand.grid(
  pH = seq(min(wine$pH), max(wine$pH), length = 500),
  alcohol = seq(min(wine$alcohol), max(wine$alcohol), length = 500))
predictions <- data.frame(contour_data,
  type = as.numeric(predict(m, contour_data)))
library(ggplot2)
ggplot(wine, aes(pH, alcohol, colour = type)) +
  geom_point(size = 2) +
  stat_contour(aes(x = pH, y = alcohol, z = type),
    data = predictions, colour = "black")
```

In this case, points to the left of the black line are classified as white, and points to the right of the line are classified as red. It is clear from the plot (both from the point clouds and from the decision boundaries) that the model won’t work very well, as many wines will be misclassified.

9.2 Ethical issues in predictive modelling

Even when they are used for the best of intents, predictive models can inadvertently create injustice and bias, and lead to discrimination. This is particularly so for models that, in one way or another, make predictions about people. Real-world examples include facial recognition systems that perform worse for people with darker skin (Buolamwini & Gebru, 2018) and recruitment models that are biased against women (Dastin, 2018).

A common issue that can cause this type of problem is difficult-to-spot biases in the training data. If female applicants have been less likely to get a job at a company in the past, then a recruitment model built on data from that company will likely also become biased against women. It can be problematic to simply take data from the past and to consider it as the “ground-truth” when building models.

Similarly, predictive models can create situations where people are prevented from improving their circumstances, and for instance are stopped from getting out of poverty because they are poor. As an example, if people from a certain (poor) zip code historically often have defaulted on their loans, then a predictive model determining who should be granted a student loan may reject an applicant from that area solely on those grounds, even though they otherwise might be an ideal candidate for a loan (which would have allowed them to get an education and a better-paid job).
Finally, in extreme cases, predictive models can be used by authoritarian governments to track and target dissidents in a bid to block democracy and human rights.

When working on a predictive model, you should always keep these risks in mind, and ask yourself some questions. How will your model be used, and by whom? Are there hidden biases in the training data? Are the predictions good enough, and if they aren’t, what could be the consequences for people who get erroneous predictions? Are the predictions good enough for all groups of people, or does the model have worse performance for some groups? Will the predictions improve fairness or cement structural unfairness that was implicitly incorporated in the training data?

Exercise 9.6. Discuss the following. You are working for a company that tracks the behaviour of online users using cookies. The users have all agreed to be tracked by clicking on an “Accept all cookies” button, but most can be expected not to have read the terms and conditions involved. You analyse information from the cookies, consisting of data about more or less all parts of the users’ digital lives, to serve targeted ads to the users. Is this acceptable? Does the accuracy of your targeting models affect your answer? What if the ads are relevant to the user 99% of the time? What if they only are relevant 1% of the time?

Exercise 9.7. Discuss the following. You work for a company that has developed a facial recognition system. In a final trial before releasing your product, you discover that your system performs poorly for people over the age of 70 (the accuracy is 99% for people below 70 and 65% for people above 70). Should you release your system without making any changes to it? Does your answer depend on how it will be used? What if it is used instead of keycards to access offices? What if it is used to unlock smartphones? What if it is used for ID controls at voting stations? What if it is used for payments?

Exercise 9.8. Discuss the following. Imagine a model that predicts how likely it is that a suspect committed a crime that they are accused of, and that said model is used in courts of law. The model is described as being faster, fairer, and more impartial than human judges. It is a highly complex black-box machine learning model built on data from previous trials. It uses hundreds of variables, and so it isn’t possible to explain why it gives a particular prediction for a specific individual. The model makes correct predictions 99% of the time. Is using such a model in the judicial system acceptable? What if an innocent person is predicted by the model to be guilty, without an explanation of why it found them to be guilty? What if the model makes correct predictions 90% or 99.99% of the time? Are there things that the model shouldn’t be allowed to take into account, such as skin colour or income? If so, how can you make sure that such variables aren’t implicitly incorporated into the training data?
9.3 Challenges in predictive modelling

There are a number of challenges that often come up in predictive modelling projects. In this section we’ll briefly discuss some of them.

9.3.1 Handling class imbalance

Imbalanced data, where the proportions of different classes differ a lot, are common in practice. In some areas, such as the study of rare diseases, such datasets are inherent to the field. Class imbalance can cause problems for many classifiers, as they tend to become prone to classify too many observations as belonging to the more common class.

One way to mitigate this problem is to use *down-sampling* and *up-sampling* when fitting the model. In down-sampling, only a (random) subset of the observations from the larger class are used for fitting the model, so that the number of cases from each class becomes balanced. In up-sampling the number of observations in the smaller class are artificially increased by resampling, also to achieve balance. These methods are only used when fitting the model, to avoid problems with the model overfitting to the class imbalance.

To illustrate the need and use for these methods, let’s create a more imbalanced version of the *wine* data:

```r
# Create imbalanced wine data:
wine_imb <- wine[1:5000,]
# Check class balance:
table(wine_imb$type)
```

Next, we fit three logistic models - one the usual way, one with down-sampling and one with up-sampling. We’ll use 10-fold cross-validation to evaluate their performance.

```r
library(caret)

# Fit a model the usual way:
tc <- trainControl(method = "cv", number = 10,
                   savePredictions = TRUE,
                   classProbs = TRUE)
m1 <- train(type ~ pH + alcohol,
            data = wine_imb,
            trControl = tc,
            method = "glm",
            family = "binomial")

# Fit with down-sampling:
```
tc <- trainControl(method = "cv", number = 10,
 savePredictions = TRUE,
 classProbs = TRUE,
 sampling = "down")
m2 <- train(type ~ pH + alcohol,
 data = wine_imb,
 trControl = tc,
 method = "glm",
 family = "binomial")

Fit with up-sampling:
tc <- trainControl(method = "cv", number = 10,
 savePredictions = TRUE,
 classProbs = TRUE,
 sampling = "up")
m3 <- train(type ~ pH + alcohol,
 data = wine_imb,
 trControl = tc,
 method = "glm",
 family = "binomial")

Looking at the accuracy of the three models, m1 seems to be the winner:

m1$results
m2$results
m3$results

Bear in mind though, that the accuracy can be very high when you have imbalanced classes, even if your model has overfitted to the data and always predicts that all observations belong to the same class. Perhaps ROC curves will paint a different picture?

library(MLeval)
plots <- evalm(list(m1, m2, m3),
 gnames = c("Imbalanced data",
 "Down-sampling",
 "Up-sampling"))

The three models have virtually identical performance in terms of AUC, so thus far there doesn’t seem to be an advantage to using down-sampling or up-sampling.

Now, let’s make predictions for all the red wines that the models haven’t seen in the training data. What are the predicted probabilities of them being red, for each model?
Number of red wines:
size <- length(5001:nrow(wine))

Collect the predicted probabilities in a data frame:
red_preds <- data.frame(pred = c(predict(m1, wine[5001:nrow(wine)], type = "prob")[, 1],
predict(m2, wine[5001:nrow(wine)], type = "prob")[, 1],
predict(m3, wine[5001:nrow(wine)], type = "prob")[, 1]),
method = rep(c("Standard",
 "Down-sampling",
 "Up-sampling"),
c(size, size, size)))

Plot the distributions of the predicted probabilities:
library(ggplot2)
ggplot(red_preds, aes(pred, colour = method)) +
 geom_density()

When the model is fitted using the standard methods, almost all red wines get very low predicted probabilities of being red. This isn’t the case for the models that used down-sampling and up-sampling, meaning that m2 and m3 are much better at correctly classifying red wines. Note that we couldn’t see any differences between the models in the ROC curves, but that there are huge differences between them when they are applied to new data. Problems related to class imbalance can be difficult to detect, so always be careful when working with imbalanced data.

9.3.2 Assessing variable importance

caret contains a function called varImp that can be used to assess the relative importance of different variables in a model. dotPlot can then be used to plot the results:

library(caret)
tc <- trainControl(method = "LOOCV")
m <- train(mpg ~ .,
 data = mtcars,
 method = "lm",
 trControl = tc)

varImp(m) # Numeric summary
dotPlot(varImp(m)) # Graphical summary

Getting a measure of variable importance sounds really good - it can be useful to know which variables that influence the model the most. Unfortunately, varImp uses a nonsensical importance measure: the t-statistics of the coefficients of the
linear model. In essence, this means that variables with a lower p-value are assigned higher importance. But the p-value is not a measure of effect size, nor the predictive importance of a variable (see e.g. Wasserstein & Lazar (2016)). I strongly advise against using varImp for linear models.

There are other options for computing variable importance for linear and generalised linear models, for instance in the relaimpo package, but mostly these rely on in-sample metrics like R^2. Since our interest is in the predictive performance of our model, we are chiefly interested in how much the different variables affect the predictions. In Section 9.5.2 we will see an example of such an evaluation, for another type of model.

9.3.3 Extrapolation

It is always dangerous to use a predictive model with data that comes from outside the range of the variables in the training data. We’ll use bacteria.csv as an example of that - download that file from the book’s web page and set file_path to its path. The data has two variables, Time and OD. The first describes the time of a measurement, and the second describes the optical density (OD) of a well containing bacteria. The more the bacteria grow, the greater the OD. First, let’s load and plot the data:

```r
# Read and format data:
bacteria <- read.csv(file_path)
bacteria$Time <- as.POSIXct(bacteria$Time, format = "%H:%M:%S")

# Plot the bacterial growth:
library(ggplot2)
ggplot(bacteria, aes(Time, OD)) +
  geom_line()
```

Now, let’s fit a linear model to data from hours 3-6, during which the bacteria are in their exponential phase, where they grow faster:

```r
# Fit model:
m <- lm(OD ~ Time, data = bacteria[45:90,])

# Plot fitted model:
ggplot(bacteria, aes(Time, OD)) +
  geom_line() +
  geom_abline(aes(intercept = coef(m)[1], slope = coef(m)[2]),
              colour = "red")
```

The model fits the data that it’s been fitted to extremely well - but does very poorly outside this interval. It overestimates the future growth and underestimates the previous OD.
In this example, we had access to data from outside the range used for fitting the model, which allowed us to see that the model performs poorly outside the original data range. In most cases however, we do not have access to such data. When extrapolating outside the range of the training data, there is always a risk that the patterns governing the phenomena we are studying are completely different, and it is important to be aware of this.

9.3.4 Missing data and imputation

The estates.xlsx data that you studied in Exercise 9.2 contained a lot of missing data, and as a consequence, you had to remove a lot of rows from the dataset. Another option is to use imputation, i.e. to add artificially generated observations in place of the missing values. This allows you to use the entire dataset - even those observations where some variables are missing. caret has functions for doing this, using methods that are based on some of the machine learning models that we will look at in Section 9.5.

To see an example of imputation, let’s create some missing values in mtcars:

```r
mtcars_missing <- mtcars
rows <- sample(1:nrow(mtcars), 5)
cols <- sample(1:ncol(mtcars), 2)
mtcars_missing[rows, cols] <- NA
mtcars_missing
```

If we try to fit a model to this data, we’ll get an error message about NA values:

```r
library(caret)
tc <- trainControl(method = "repeatedcv",
                   number = 10, repeats = 100)
m <- train(mpg ~ ., data = mtcars_missing, method = "lm",
            trControl = tc)
```

By adding `preProcess = "knnImpute"` and `na.action = na.pass` to `train` we can use the observations that are the most similar to those with missing values to impute data:

```r
library(caret)
tc <- trainControl(method = "repeatedcv",
                   number = 10, repeats = 100)
m <- train(mpg ~ ., data = mtcars_missing, method = "lm",
            trControl = tc, preProcess = "knnImpute",
            na.action = na.pass)
```
na.action = na.pass)

m$results

You can compare the results obtained for this model to does obtained using the complete dataset:

m <- train(mpg ~ .,
 data = mtcars,
 method = "lm",
 trControl = tc)

m$results

Here, these are probably pretty close (we didn’t have a lot of missing data, after all), but not identical.

9.3.5 Endless waiting

Comparing many different models can take a lot of time, especially if you are working with large datasets. Waiting for the results can seem to take forever. Fortuitously, modern computers have processing units, CPU’s, that can perform multiple computations in parallel using different cores or threads. This can significantly speed up model fitting, as it for instance allows us to fit the same model to different subsets in a cross-validation in parallel, i.e. at the same time.

In Section 10.2 you’ll learn how to perform any type of computation in parallel. However, caret is so simple to run in parallel that we’ll have a quick look at that right away. We’ll use the foreach, parallel, and doParallel packages, so let’s install them:

install.packages(c("foreach", "parallel", "doParallel"))

The number of cores available on your machine determines how many processes can be run in parallel. To see how many you have, use detectCores:

library(parallel)
detectCores()

You should avoid the temptation of using all available cores for your parallel computation - you’ll always need to reserve at least one for running RStudio and other applications.

To enable parallel computations, we use registerDoParallel to register the parallel backend to be used. Here is an example where we create 3 workers (and so use 3 cores in parallel):

2If your CPU has 3 or fewer cores, you should lower this number.
9.3. CHALLENGES IN PREDICTIVE MODELLING

library(doParallel)
registerDoParallel(3)

After this, it will likely take less time to fit your caret models, as model fitting now will be performed using parallel computations on 3 cores. That means that you’ll spend less time waiting and more time modelling. Hurrah! One word of warning though: parallel computations require more memory, so you may run into problems with RAM if you are working on very large datasets.

9.3.6 Overfitting to the test set

Although out-of-sample evaluations are better than in-sample evaluations of predictive models, they are not without risks. Many practitioners like to fit several different models to the same dataset, and then compare their performance (indeed, we ourselves have done and will continue to do so!). When doing this, there is a risk that we overfit our models to the data used for the evaluation. The risk is greater when using test-training splits, but is not non-existent for cross-validation and bootstrapping. An interesting example of this phenomenon is presented by Recht et al. (2019), who show that the celebrated image classifiers trained on a dataset known as ImageNet perform significantly worse when used on new data.

When building predictive models that will be used in a real setting, it is a good practice to collect an additional evaluation set that is used to verify that the model still works well when faced with new data, that wasn’t part of the model fitting or the model testing. If your model performs worse than expected on the evaluation set, it is a sign that you’ve overfitted your model to the test set.

Apart from testing so many models that one happens to perform well on the test data (thus overfitting), there are several mistakes that can lead to overfitting. One example is data leakage, where part of the test data “leaks” into the training set. This can happen in several ways: maybe you include an explanatory variable that is a function of the response variable (e.g. price per square meter when trying to predict housing prices), or maybe you have twinned or duplicate observations in your data. Another example is to not include all steps of the modelling in the evaluation, for instance by first using the entire dataset to select which variables to include, and then use cross-validation to assess the performance of the model. If you use the data for variable selection, then that needs to be a part of your cross-validation as well.

In contrast to much of traditional statistics, out-of-sample evaluations are example-based. We must be aware that what worked at one point won’t necessarily work in the future. It is entirely possible that the phenomenon that we are modelling is non-stationary, meaning that the patterns in the training data differ from the patterns in future data. In that case, our model can be overfitted in the sense that it describes patterns that no longer are valid. It is therefore important to not only validate a predictive model once, but to return to it at a later point to check that it
still performs as expected. Model evaluation is a task that lasts as long as the model is in use.

9.4 Regularised regression models

The standard method used for fitting linear models, ordinary least squares or OLS, can be shown to yield the best unbiased estimator of the regression coefficients (under certain assumptions). But what if we are willing to use estimators that are biased? A common way of measuring the performance of an estimator is the mean squared error, MSE. If $\hat{\theta}$ is an estimator of a parameter θ, then

$$MSE(\theta) = E((\hat{\theta} - \theta)^2) = \text{Bias}^2(\hat{\theta}) + \text{Var}(\hat{\theta}),$$

which is known as the bias-variance decomposition of the MSE. This means that if increasing the bias allows us to decrease the variance, it is possible to obtain an estimator with a lower MSE than what is possible for unbiased estimators.

Regularised regression models are linear or generalised linear models in which a small (typically) bias is introduced in the model fitting. Often this can lead to models with better predictive performance. Moreover, it turns out that this also allows us to fit models in situations where it wouldn’t be possible to fit ordinary (generalised) linear models, for example when the number of variables is greater than the sample size.

To introduce the bias, we add a penalty term to the loss function used to fit the regression model. In the case of linear regression, the usual loss function is the squared l_2 norm, meaning that we seek the estimates β_i that minimise

$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \beta_2 x_{i2} - \cdots - \beta_p x_{ip})^2.$$

When fitting a regularised regression model, we instead seek the $\beta = (\beta_1, \ldots, \beta_p)$ that minimise

$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \beta_2 x_{i2} - \cdots - \beta_p x_{ip})^2 + p(\beta, \lambda),$$

for some penalty function $p(\beta, \lambda)$. The penalty function increases the “cost” of having large β_i, which causes the estimates to “shrink” towards 0. λ is a shrinkage parameter used to control the strength of the shrinkage - the larger λ is, the greater the shrinkage. It is usually chosen using cross-validation.

Regularised regression models are not invariant under linear rescalings of the explanatory variables, meaning that if a variable is multiplied by some number a, then this can change the fit of the entire model in an arbitrary way. For that reason, it is
widely agreed that the explanatory variables should be standardised to have mean 0 and variance 1 before fitting a regularised regression model. Fortunately, the functions that we will use for fitting these models does that for us, so that we don’t have to worry about it. Moreover, they then rescale the model coefficients to be on the original scale, to facilitate interpretation of the model. We can therefore interpret the regression coefficients in the same way as we would for any other regression model.

In this section, we’ll look at how to use regularised regression in practice. Further mathematical details are deferred to Section 12.5. We will make use of model-fitting functions from the glmnet package, so let’s start by installing that:

```r
install.packages("glmnet")
```

We will use the mtcars data to illustrate regularised regression. We’ll begin by once again fitting an ordinary linear regression model to the data:

```r
library(caret)
tc <- trainControl(method = "LOOCV")
m1 <- train(mpg ~ ., data = mtcars, method = "lm", trControl = tc)
summary(m1)
```

9.4.1 Ridge regression

The first regularised model that we will consider is ridge regression (Hoerl & Kennard, 1970), for which the penalty function is $p(\beta, \lambda) = \lambda \sum_{j=1}^{p} \beta_j^2$. We will fit such a model to the mtcars data using train. LOOCV will be used, both for evaluating the model and for finding the best choice of the shrinkage parameter λ. This process is often called hyperparameter tuning - we tune the hyperparameter λ until we get a good model.

```r
library(caret)
# Fit ridge regression:
tc <- trainControl(method = "LOOCV")
m2 <- train(mpg ~ ., data = mtcars, method = "glmnet",
           tuneGrid = expand.grid(alpha = 0,
                                   lambda = seq(0, 10, 0.1)),
           metric = "RMSE",
           trControl = tc)
```

3Parameters like λ that describe “settings” used for the method rather than parts of the model, are often referred to as hyperparameters.
In the `tuneGrid` setting of `train` we specified that values of \(\lambda \) in the interval \([0, 10]\) should be evaluated. When we print the `m` object, we will see \(RMSE \) and \(MAE \) of the models for different values of \(\lambda \) (with \(\lambda = 0 \) being ordinary non-regularised linear regression):

```r
# Print the results:
m2

# Plot the results:
library(ggplot2)
ggplot(m2, metric = "RMSE")
ggplot(m2, metric = "MAE")
```

To only print the results for the best model, we can use:

```r
m2$results[which(m2$results$lambda == m2$finalModel$lambdaOpt),]
```

Note that the \(RMSE \) is substantially lower than that for the ordinary linear regression (\(m1 \)).

In the `metric` setting of `train`, we said that we wanted \(RMSE \) to be used to determine which value of \(\lambda \) gives the best model. To get the coefficients of the model with the best choice of \(\lambda \), we use `coef` as follows:

```r
# Check the coefficients of the best model:
coef(m2$finalModel, m2$finalModel$lambdaOpt)
```

Comparing these coefficients to those from the ordinary linear regression (`summary(m1)`), we see that the coefficients of the two models actually differ quite a lot.

If we want to use our ridge regression model for prediction, it is straightforward to do so using `predict(m)`, as `predict` automatically uses the best model for prediction.

It is also possible to choose \(\lambda \) without specifying the region in which to search for the best \(\lambda \), i.e. without providing a `tuneGrid` argument. In this case, some (arbitrarily chosen) default values will be used instead:

```r
m2 <- train(mpg ~ ., 
  data = mtcars, 
  method = "glmnet", 
  metric = "RMSE", 
  trControl = tc)
m2
```
Exercise 9.9. Return to the estates.xlsx data from Exercise 9.2. Refit your linear model, but this time use ridge regression instead. Does the RMSE and MAE improve?

Exercise 9.10. Return to the wine data from Exercise 9.5. Fitting the models below will take a few minutes, so be prepared to wait for a little while.

1. Fit a logistic ridge regression model to the data (make sure to add family = "binomial" so that you actually fit a logistic model and not a linear model), using all variables in the dataset (except type) as explanatory variables. Use 5-fold cross-validation for choosing λ and evaluating the model (other options are too computer-intensive). What metric is used when finding the optimal λ?

2. Set summaryFunction = twoClassSummary in trainControl and metric = "ROC" in train and refit the model using AUC to find the optimal λ. Does the choice of λ change, for this particular dataset?

9.4.2 The lasso

The next regularised regression model that we will consider is the lasso (Tibshirani, 1996), for which $p(\beta, \lambda) = \lambda \sum_{j=1}^{p} |\beta_j|$. This is an interesting model because it simultaneously performs estimation and variable selection, by completely removing some variables from the model. This is particularly useful if we have a large number of variables, in which case the lasso may create a simpler model while maintaining high predictive accuracy. Let’s fit a lasso model to our data, using MAE to select the best λ:

```r
library(caret)
tc <- trainControl(method = "LOOCV")
m3 <- train(mpg ~ .,
data = mtcars,
method = "glmnet",
tuneGrid = expand.grid(alpha = 1,
lambda = seq(0, 10, 0.1)),
metric = "MAE",
trControl = tc)

# Plot the results:
library(ggplot2)
ggplot(m3, metric = "RMSE")
ggplot(m3, metric = "MAE")

# Results for the best model:
m3$results[which(m3$results$lambda == m3$finalModel$lambdaOpt),]
```
Coefficients for the best model:
coef(m3$finalModel, m3$finalModel$lambdaOpt)

The variables that were removed from the model are marked by points (.) in the list of coefficients. The RMSE is comparable to that from the ridge regression - and is better than that for the ordinary linear regression, but the number of variables used is fewer. The lasso model is more parsimonious, and therefore easier to interpret (and present to your boss/client/supervisor/colleagues!).

If you only wish to extract the names of the variables with non-zero coefficients from the lasso model (i.e. a list of the variables retained in the variable selection), you can do so using the code below. This can be useful if you have a large number of variables and quickly want to check which have non-zero coefficients:

```r
colnames(coef(m3$finalModel, m3$finalModel$lambdaOpt))
```

Exercise 9.11. Return to the estates.xlsx data from Exercise 9.2. Refit your linear model, but this time use the lasso instead. Does the RMSE and MAE improve?

Exercise 9.12. To see how the lasso handles variable selection, simulate a dataset where only the first 5 out of 200 explanatory variables are correlated with the response variable:

```r
n <- 100  # Number of observations
p <- 200  # Number of variables
# Simulate explanatory variables:
x <- matrix(rnorm(n*p), n, p)
# Simulate response variable:
y <- 2*x[,1] + x[,2] - 3*x[,3] + 0.5*x[,4] + 0.25*x[,5] + rnorm(n)
# Collect the simulated data in a data frame:
simulated_data <- data.frame(y, x)
```

1. Fit a linear model to the data (using the model formula y ~ .). What happens?
2. Fit a lasso model to this data. Does it select the correct variables? What if you repeat the simulation several times, or change the values of n and p?

9.4.3 Elastic net

A third option is the elastic net (Zou & Hastie, 2005), which essentially is a compromise between ridge regression and the lasso. Its penalty function is $p(\beta, \lambda, \alpha) = \ldots$
\[\lambda \left(\alpha \sum_{j=1}^{p} |\beta_j| + (1 - \alpha) \sum_{j=1}^{p} \beta_j^2 \right), \text{ with } 0 \leq \alpha \leq 1. \]
\[\alpha = 0 \text{ yields the ridge estimator, } \alpha = 1 \text{ yields the lasso, and } \alpha \text{ between 0 and 1 yields a combination of the both.} \]

When fitting an elastic net model, we search for an optimal choice of \(\alpha \), along with the choice of \(\lambda \). To fit such a model, we can run the following:

```r
library(caret)
tc <- trainControl(method = "LOOCV")
m4 <- train(mpg ~ ., 
data = mtcars,
method = "glmnet",
tuneGrid = expand.grid(alpha = seq(0, 1, 0.1),
lambda = seq(0, 10, 0.1)),
metric = "RMSE",
trControl = tc)

# Print best choices of alpha and lambda:
m4$bestTune

# Print the RMSE and MAE for the best model:
m4$results[which(rownames(m4$results) == rownames(m4$bestTune))],

# Print the coefficients of the best model:
coef(m4$finalModel, m4$bestTune$lambda, m4$bestTune$alpha)
```

In this example, the ridge regression happened to yield the best fit, in terms of the cross-validation RMSE.

~

Exercise 9.13. Return to the `estates.xlsx` data from Exercise 9.2. Refit your linear model, but this time use the elastic net instead. Does the RMSE and MAE improve?

Choosing the best model

So far, we have used the values of \(\lambda \) and \(\alpha \) that give the best results according to a performance metric, such as RMSE or AUC. However, it is often the case that we can find a more parsimonious, i.e. simpler, model with almost as good performance. Such models can sometimes be preferable, because of their relative simplicity. Using those models can also reduce the risk of overfitting. caret has two functions that can be used for this:

- **oneSE**, which follows a rule-of-thumb from Breiman et al. (1984), which states that the simplest model within one standard error of the model with the best performance should be chosen,
• **tolerance**, which chooses the simplest model that has a performance within (by default) 1.5% of the model with the best performance.

Neither of these can be used with LOOCV, but work for other cross-validation schemes and the bootstrap.

We can set the rule for selecting the “best” model using the argument `selectionFunction` in `trainControl`. By default, it uses a function called `best` that simply extracts the model with the best performance. Here are some examples for the lasso:

```r
library(caret)

# Choose the best model (this is the default!):
tc <- trainControl(method = "repeatedcv",
                   number = 10, repeats = 100)

m3 <- train(mpg ~ .,
data = mtcars,
            method = "glmnet",
tuneGrid = expand.grid(alpha = 1,
                       lambda = seq(0, 10, 0.1)),
            metric = "RMSE",
            trControl = tc)

# Print the best model:
m3$bestTune
 coef(m3$finalModel, m3$finalModel$lambdaOpt)

# Choose model using oneSE:
tc <- trainControl(method = "repeatedcv",
                   number = 10, repeats = 100,
                   selectionFunction = "oneSE")

m3 <- train(mpg ~ .,
data = mtcars,
            method = "glmnet",
tuneGrid = expand.grid(alpha = 1,
                       lambda = seq(0, 10, 0.1)),
            trControl = tc)

# Print the "best" model (according to the oneSE rule):
m3$bestTune
 coef(m3$finalModel, m3$finalModel$lambdaOpt)
```

In this example, the difference between the models is small - and it usually is. In some cases, using `oneSE` or `tolerance` leads to a model that has better performance on new data, but in other cases the model that has the best performance in the evaluation also has the best performance for new data.
9.4.5 Regularised mixed models

caret does not handle regularisation of (generalised) linear mixed models. If you want to work with such models, you’ll therefore need a package that provides functions for this:

```
install.packages("glmmLasso")
```

Regularised mixed models are strange birds. Mixed models are primarily used for inference about the fixed effects, whereas regularisation primarily is used for predictive purposes. The two don’t really seem to match. They can however be very useful if our main interest is estimation rather than prediction or hypothesis testing, where regularisation can help decrease overfitting. Similarly, it is not uncommon for linear mixed models to be numerically unstable, with the model fitting sometimes failing to converge. In such situations, a regularised LMM will often work better. Let’s study an example concerning football (soccer) teams, from Groll & Tutz (2014), that shows how to incorporate random effects and the lasso in the same model:

```
library(glmmLasso)

data(soccer)
?soccer
View(soccer)
```

We want to model the points totals for these football teams. We suspect that variables like transfer.spendings can affect the performance of a team:

```
ggplot(soccer, aes(transfer.spendings, points, colour = team)) +
  geom_point() +
  geom_smooth(method = "lm", colour = "black", se = FALSE)
```

Moreover, it also seems likely that other non-quantitative variables also affect the performance, which could cause the teams to all have different intercepts. Let’s plot them side-by-side:

```
library(ggplot2)

ggplot(soccer, aes(transfer.spendings, points, colour = team)) +
  geom_point() +
  theme(legend.position = "none") +
  facet_wrap(~ team, nrow = 3)
```

When we model the points totals, it seems reasonable to include a random intercept for team. We’ll also include other fixed effects describing the crowd capacity of the teams’ stadiums, and their playing style (e.g. ball possession and number of yellow cards).

The glmmLasso functions won’t automatically centre and scale the data for us, which you’ll recall is recommended to do before fitting a regularised regression model. We’ll
create a copy of the data with centred and scaled numeric explanatory variables:

```r
soccer_scaled <- soccer
center = TRUE,
scale = TRUE)
``` 

Next, we’ll run a for loop to find the best \(\lambda \). Because we are interested in fitting a model to this particular dataset rather than making predictions, we will use an in-sample measure of model fit, \(BIC \), to compare the different values of \(\lambda \). The code below is partially adapted from demo("glmmLasso-soccer"):

```r
# Number of effects used in model:
params <- 10

# Set parameters for optimisation:
lambda <- seq(500, 0, by = -5)
BIC_vec <- rep(Inf, length(lambda))
m_list <- list()
Delta_start <- as.matrix(t(rep(0, params + 23)))
Q_start <- 0.1

# Search for optimal lambda:
pbar <- txtProgressBar(min = 0, max = length(lambda), style = 3)
for(j in 1:length(lambda)) {
  setTxtProgressBar(pbar, j)

  m <- glmmLasso(points ~ 1 + transfer.spendings + 
  transfer.receits + 
  ave.unfair.score + 
  tackles + 
  yellow.card + 
  sold.out + 
  ball.possession + 
  capacity +
  ave.attend,
  rnd = list(team = - 1),
  family = poisson(link = log),
  data = soccer_scaled,
  lambda = lambda[j],
  switch.NR = FALSE,
  final.re = TRUE,
  control = list(start = Delta_start[j,],
                 q_start = Q_start[j]))
```
9.5 Machine learning models

In this section we will have a look at the smorgasbord of machine learning models that can be used for predictive modelling. Some of these models differ from more traditional regression models in that they are black-box models, meaning that we don’t always know what’s going on inside the fitted model. This is in contrast to e.g. linear regression, where we can look at and try to interpret the β coefficients. Another difference is that these models have been developed solely for prediction, and so often lack some of the tools that we associate with traditional regression models, like confidence intervals and p-values.

Because we use caret for the model fitting, fitting a new type of model mostly amounts to changing the method argument in train. But please note that I wrote mostly - there are a few other differences e.g. in the preprocessing of the data to which you need to pay attention. We’ll point these out as we go.

9.5.1 Decision trees

Decision trees are a class of models that can be used for both classification and regression. Their use is perhaps best illustrated by an example, so let’s fit a decision
CHAPTER 9. PREDICTIVE MODELLING AND MACHINE LEARNING

tree to the estates data from Exercise 9.2. We set file_path to the path to estates.xlsx and import and clean the data as before:

library(openxlsx)
estates <- read.xlsx(file_path)
estates <- na.omit(estates)

Next, we fit a decision tree by setting method = "rpart"\(^4\), which uses functions from the rpart package to fit the tree:

library(caret)
tc <- trainControl(method = "LOOCV")
m <- train(selling_price ~ ., data = estates,
 trControl = tc,
 method = "rpart",
 tuneGrid = expand.grid(cp = 0))

So, what is this? We can plot the resulting decision tree using the rpart.plot package, so let’s install and use that:

install.packages("rpart.plot")
library(rpart.plot)
prp(m$finalModel)

What we see here is our machine learning model - our decision tree. When it is used for prediction, the new observation is fed to the top of the tree, where a question about the new observation is asked: “is tax_value < 1610”? If the answer is yes, the observation continues down the line to the left, to the next question. If the answer is no, it continues down the line to the right, to the question ”is tax_value < 2720", and so on. After a number of questions, the observation reaches a circle - a so-called leaf node, with a number in it. This number is the predicted selling price of the house, which is based on observations in the training data that belong to the same leaf. When the tree is used for classification, the predicted probability of class A is the proportion of observations from the training data in the leaf that belong to class A.

prp has a number of parameters that lets us control what our tree plot looks like. box.palette, shadow.col, nn, type, extra, and cex are all useful - read the documentation for prp to see how they affect the plot:

\(^4\)The name rpart may seem cryptic: it is an abbreviation for Recursive Partitioning and Regression Trees, which is a type of decision trees.
When fitting the model, \texttt{rpart} builds the tree from the top down. At each split, it tries to find a question that will separate subgroups in the data as much as possible. There is no need to standardise the data (in fact, this won’t change the shape of the tree at all).

Exercise 9.14. Fit a classification tree model to the \texttt{wine} data, using \texttt{pH}, \texttt{alcohol}, \texttt{fixed.acidity}, and \texttt{residual.sugar} as explanatory variables. Evaluate its AUC using repeated 10-fold cross-validation.

1. Plot the resulting decision tree. It is too large to be easily understandable, and needs to be pruned. This is done using the parameter \texttt{cp}. Try increasing the value of \texttt{cp} in \texttt{tuneGrid = expand.grid(cp = 0)} to different values between 0 and 1. What happens with the tree?

2. Use \texttt{tuneGrid = expand.grid(cp = seq(0, 0.01, 0.001))} to find an optimal choice of \texttt{cp}. What is the result?

Exercise 9.15. Fit a regression tree model to the \texttt{bacteria.csv} data to see how OD changes with \texttt{Time}, using the data from observations 45 to 90 of the data frame, as in the example in Section 9.3.3. Then make predictions for all observations in the dataset. Plot the actual OD values along with your predictions. Does the model extrapolate well?

Exercise 9.16. Fit a classification tree model to the \texttt{seeds} data from Section 4.9, using \texttt{Variety} as the response variable and \texttt{Kernel_length} and \texttt{Compactness} as explanatory variables. Plot the resulting decision boundaries, as in Section 9.1.8. Do they seem reasonable to you?

9.5.2 Random forests

Random forest (Breiman, 2001) is an \textit{ensemble method}, which means that it is based on combining multiple predictive models. In this case, it is a combination of multiple decision trees, that have been built using different subsets of the data. Each tree is fitted to a bootstrap sample of the data (a procedure known as \textit{bagging}), and at each
split only a random subset of the explanatory variables are used. The predictions from these trees are then averaged to obtain a single prediction. While the individual trees in the forest tend to have rather poor performance, the random forest itself often performs better than a single decision tree fitted to all of the data using all variables.

To fit a random forest to the estates data (loaded in the same way as in Section 9.5.1), we set `method = "rf"`, which will let us do the fitting using functions from the randomForest package. The random forest has a parameter called `mtry` that determines the number of randomly selected explanatory variables. As a rule-of-thumb, `mtry` close to \sqrt{p}, where p is the number of explanatory variables in your data, is usually a good choice. When trying to find the best choice for `mtry` I recommend trying some values close to that.

For the estates data we have 11 explanatory variables, and so a value of `mtry` close to $\sqrt{11} \approx 3$ could be a good choice. Let’s try a few different values with a 10-fold cross-validation:

```r
call(caret)
tc <- trainControl(method = "cv",
                   number = 10)

m <- train(selling_price ~ .,
           data = estates,
           trControl = tc,
           method = "rf",
           tuneGrid = expand.grid(mtry = 2:4))
m
```

In my run, an `mtry` equal to 4 gave the best results. Let’s try larger values as well, just to see if that gives a better model:

```r
m <- train(selling_price ~ .,
           data = estates,
           trControl = tc,
           method = "rf",
           tuneGrid = expand.grid(mtry = 4:10))
m
```

We can visually inspect the impact of `mtry` by plotting `m`:

```r
ggplot(m)
```

For this data, a value of `mtry` that is a little larger than what usually is recommended seems to give the best results. It was a good thing that we didn’t just blindly go with the rule-of-thumb, but instead tried a few different values.
Random forests have a built-in variable importance measure, which is based on measuring how much worse the model fares when the values of each variable are permuted. This is a much more sensible measure of variable importance than that presented in Section 9.3.2. The importance values are reported on a relative scale, with the value for the most important variable always being 100. Let’s have a look:

```r
dotPlot(varImp(m))
```

Exercise 9.17. Fit a decision tree model and a random forest to the `wine` data, using all variables (except `type`) as explanatory variables. Evaluate their performance using 10-fold cross-validation. Which model has the best performance?

Exercise 9.18. Fit a random forest to the `bacteria.csv` data to see how OD changes with `Time`, using the data from observations 45 to 90 of the data frame, as in the example in Section 9.3.3. Then make predictions for all observations in the dataset. Plot the actual OD values along with your predictions. Does the model extrapolate well?

Exercise 9.19. Fit a random forest model to the `seeds` data from Section 4.9, using `Variety` as the response variable and `Kernel_length` and `Compactness` as explanatory variables. Plot the resulting decision boundaries, as in Section 9.1.8. Do they seem reasonable to you?

9.5.3 Boosted trees

Another useful class of ensemble method that relies on combining decision trees are boosted trees. Several different versions are available - we’ll use a version called Stochastic Gradient Boosting (Friedman, 2002), which is available through the `gbm` package. Let’s start by installing that:

```r
install.packages("gbm")
```

The decision trees in the ensemble are built sequentially, with each new tree giving more weight to observations for which the previous trees performed poorly. This process is known as boosting.

When fitting a boosted trees model in `caret`, we set `method = "gbm"`. There are four parameters that we can use to find a better fit. The two most important are `interaction.depth`, which determines the maximum tree depth (values greater than \(\sqrt{p}\), where \(p\) is the number of explanatory variables in your data, are discouraged) and `n.trees`, which specifies the number of trees to fit (also known as the number of boosting iterations). Both these can have a large impact on the model fit. Let’s try a few values with the `estates` data (loaded in the same way as in Section 9.5.1):
library(caret)
tc <- trainControl(method = "cv",
 number = 10)

m <- train(selling_price ~ ., data = estates,
 trControl = tc,
 method = "gbm",
 tuneGrid = expand.grid(
 interaction.depth = 1:3,
 n.trees = seq(20, 200, 10),
 shrinkage = 0.1,
 n.minobsinnode = 10),
 verbose = FALSE)

The setting \texttt{verbose = FALSE} is added used to stop \texttt{gbm} from printing details about each fitted tree.

We can plot the model performance for different settings:

\begin{verbatim}
ggplot(m)
\end{verbatim}

As you can see, using more trees (a higher number of boosting iterations) seems to lead to a better model. However, if we use too many trees, the model usually overfits, leading to a worse performance in the evaluation:

\begin{verbatim}
m <- train(selling_price ~ ., data = estates,
 trControl = tc,
 method = "gbm",
 tuneGrid = expand.grid(
 interaction.depth = 1:3,
 n.trees = seq(25, 500, 25),
 shrinkage = 0.1,
 n.minobsinnode = 10),
 verbose = FALSE)

ggplot(m)
\end{verbatim}

A table and plot of variable importance is given by \texttt{summary}:

\begin{verbatim}
summary(m)
\end{verbatim}

In many problems, boosted trees are among the best-performing models. They do however require a lot of tuning, which can be time-consuming, both in terms of how
long it takes to run the tuning and in terms of how much time you have to spend fiddling with the different parameters. Several different implementations of boosted trees are available in caret. A good alternative to gbm is xgbTree from the xgboost package. I’ve chosen not to use that for the examples here, as it often is slower to train due to having a larger number of hyperparameters (which in return makes it even more flexible!).

Exercise 9.20. Fit a boosted trees model to the wine data, using all variables (except type) as explanatory variables. Evaluate its performance using repeated 10-fold cross-validation. What is the best AUC that you can get by tuning the model parameters?

Exercise 9.21. Fit a boosted trees regression model to the bacteria.csv data to see how OD changes with Time, using the data from observations 45 to 90 of the data frame, as in the example in Section 9.3.3. Then make predictions for all observations in the dataset. Plot the actual OD values along with your predictions. Does the model extrapolate well?

Exercise 9.22. Fit a boosted trees model to the seeds data from Section 4.9, using Variety as the response variable and Kernel_length and Compactness as explanatory variables. Plot the resulting decision boundaries, as in Section 9.1.8. Do they seem reasonable to you?

9.5.4 Model trees

A downside to all the tree-based models that we’ve seen so far is their inability to extrapolate when the explanatory variables of a new observation are outside the range in the training data. You’ve seen this e.g. in Exercise 9.15. Methods based on model trees solve this problem by fitting e.g. a linear model in each leaf node of the decision tree. Ordinary decision trees fit regression models that are piecewise constant, while model trees utilising linear regression fit regression models that are piecewise linear.

The model trees that we’ll now have a look at aren’t available in caret, meaning that we can’t use its functions for evaluating models using cross-validations. We can however still perform cross-validation using a for loop, as we did in the beginning of Section 9.1.3. Model trees are available through the partykit package, which we’ll install next. We’ll also install ggparty, which contains tools for creating good-looking plots of model trees:

```
install.packages(c("partykit", "ggparty"))
```

The model trees in partykit differ from classical decision trees not only in how the nodes are treated, but also in how the splits are determined; see Zeileis et al. (2008)
for details. To illustrate their use, we’ll return to the estates data. The model formula for model trees has two parts. The first specifies the response variable and what variables to use for the linear models in the nodes, and the second part specifies what variables to use for the splits. In our example, we’ll use living_area as the sole explanatory variable in our linear models, and location, build_year, tax_value, and plot_area for the splits (in this particular example, there is no overlap between the variables used for the linear models and the variables used for the splits, but it’s perfectly fine to have an overlap if you like!).

As in Section 9.5.1, we set file_path to the path to estates.xlsx and import and clean the data. We can then fit a model tree with linear regressions in the nodes using lmtree:

```r
library(openxlsx)
estates <- read.xlsx(file_path)
estates <- na.omit(estates)

# Make location a factor variable:
estates$location <- factor(estates$location)

# Fit model tree:
library(partykit)
m <- lmtree(selling_price ~ living_area | location + build_year +
            tax_value + plot_area,
            data = estates)
```

Next, we plot the resulting tree - make sure that you enlarge your Plot panel so that you can see the linear models fitted in each node:

```r
library(ggparty)
autoplot(m)
```

By adding additional arguments to lmtree, we can control e.g. the amount of pruning. You can find a list of all the available arguments by having a look at ?mob_control. To do automated likelihood-based pruning, we can use prune = "AIC" or prune = "BIC", which yields a slightly shorter tree:

```r
m <- lmtree(selling_price ~ living_area | location + build_year +
            tax_value + plot_area,
            data = estates,
            prune = "BIC")
autoplot(m)
```

As per usual, we can use predict to make predictions from our model. Similarly to how we used lmtree above, we can use glmtree to fit a logistic regression in each node, which can be useful for classification problems. We can also fit Poisson
9.5. MACHINE LEARNING MODELS

regressions in the nodes using `glmtree`, creating more flexible Poisson regression models. For more information on how you can control how model trees are plotted using `ggparty`, have a look at `vignette("ggparty-graphic-partying")`.

Exercise 9.23. In this exercise, you will fit model trees to the `bacteria.csv` data to see how OD changes with Time.

1. Fit a model tree and a decision tree, using the data from observations 45 to 90 of the data frame, as in the example in Section 9.3.3. Then make predictions for all observations in the dataset. Plot the actual OD values along with your predictions. Do the models extrapolate well?

2. Now, fit a model tree and a decision tree using the data from observations 20 to 120 of the data frame. Then make predictions for all observations in the dataset. Does this improve the models’ ability to extrapolate?

9.5.5 Discriminant analysis

In linear discriminant analysis (LDA), prior knowledge about how common different classes are is used to classify new observations using Bayes’ theorem. It relies on the assumption that the data from each class is generated by a multivariate normal distribution, and that all classes share a common covariance matrix. The resulting decision boundary is a hyperplane.

As part of fitting the model, LDA creates linear combinations of the explanatory variables, which are used for separating different classes. These can be used both for classification and as a supervised alternative to principal components analysis (PCA, Section 4.9).

LDA does not require any tuning. It does however allow you to specify prior class probabilities if you like, using the `prior` argument, allowing for Bayesian classification. If you don’t provide a prior, the class proportions in the training data will be used instead. Here is an example using the `wine` data from Section 9.1.7:

```r
library(caret)

tc <- trainControl(
  method = "repeatedcv",
  number = 10, repeats = 100,
  summaryFunction = twoClassSummary,
  savePredictions = TRUE,
  classProbs = TRUE)

# Without the use of a prior:
# Prior probability of a red wine is 0.25 (i.e. the
# proportion of red wines in the dataset).
```
m_no_prior <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,
 data = wine,
 trControl = tc,
 method = "lda",
 metric = "ROC")

With a prior:
Prior probability of a red wine is set to be 0.5.
m_with_prior <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,
 data = wine,
 trControl = tc,
 method = "lda",
 metric = "ROC",
 prior = c(0.5, 0.5))

m_no_prior
m_with_prior

As I mentioned, LDA can also be used as an alternative to PCA, which we studied in Section 4.9. Let’s have a look at the seeds data that the we used in that section:

The data is downloaded from the UCI Machine Learning Repository:
http://archive.ics.uci.edu/ml/datasets/seeds
seeds <- read.table("https://tinyurl.com/seedsdata",
 col.names = c("Area", "Perimeter", "Compactness",
 "Kernel_length", "Kernel_width", "Asymmetry",
 "Groove_length", "Variety"))
seeds$Variety <- factor(seeds$Variety)

When caret fits an LDA, it uses the lda function from the MASS package, which uses the same syntax as lm. If we use lda directly, without involving caret, we can extract the scores (linear combinations of variables) for all observations. We can then plot these, to get something similar to a plot of the first two principal components. There is a difference though - PCA seeks to create new variables that summarise as much as possible of the variation in the data, whereas LDA seeks to create new variables that can be used to discriminate between pre-specified groups.

Run an LDA:
library(MASS)
m <- lda(Variety ~ ., data = seeds)

Save the LDA scores:
lda_preds <- data.frame(Type = seeds$Variety,
9.5. MACHINE LEARNING MODELS

\[
\text{Score} = \text{predict(m) \times x}
\]

View(lda_preds)

There are 3 varieties of seeds. LDA creates 1 less new variable
than the number of categories - so 2 in this case. We can
therefore visualise these using a simple scatterplot.

Plot the two LDA scores for each observation to get a visual
representation of the data:
library(ggplot2)
ggplot(lda_preds, aes(Score.LD1, Score.LD2, colour = Type)) +
 geom_point()

~

Exercise 9.24. An alternative to linear discriminant analysis is quadratic discriminant analysis (QDA). This is closely related to LDA, the difference being that we no longer assume that the classes have equal covariance matrices. The resulting decision boundaries are quadratic (i.e. non-linear). Run a QDA on the wine data, by using method = "qda" in train.

Exercise 9.25. Fit an LDA classifier and a QDA classifier to the seeds data from Section 4.9, using Variety as the response variable and Kernel_length and Compactness as explanatory variables. Plot the resulting decision boundaries, as in Section 9.1.8. Do they seem reasonable to you?

Exercise 9.26. An even more flexible version of discriminant analysis is MDA, mixture discriminant analysis, which uses normal mixture distributions for classification. That way, we no longer have to rely on the assumption of normality. It is available through the mda package, and can be used in train with method = "mda". Fit an MDA classifier to the seeds data from Section 4.9, using Variety as the response variable and Kernel_length and Compactness as explanatory variables. Plot the resulting decision boundaries, as in Section 9.1.8. Do they seem reasonable to you?

9.5.6 Support vector machines

Support vector machines, SVM, is a flexible class of methods for classification and regression. Like LDA, they rely on hyperplanes to separate classes. Unlike LDA however, more weight is put to points close to the border between classes. Moreover, the data is projected into a higher-dimensional space, with the intention of creating a projection that yields a good separation between classes. Several different projection methods can be used, typically represented by kernels - functions that measure the inner product in these high-dimensional spaces.
Despite the fancy mathematics, using SVM’s is not that difficult. With `caret`, we can fit many SVM’s with many different types of kernels using the `kernlab` package. Let’s install it:

```r
install.packages("kernlab")
```

The simplest SVM uses a linear kernel, creating a linear classification that is reminiscent of LDA. Let’s look at an example using the `wine` data from Section 9.1.7. The parameter C is a regularisation parameter:

```r
library(caret)
tc <- trainControl(method = "cv",
                   number = 10,
                   summaryFunction = twoClassSummary,
                   savePredictions = TRUE,
                   classProbs = TRUE)

m <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,
           data = wine,
           trControl = tc,
           method = "svmLinear",
           tuneGrid = expand.grid(C = c(0.5, 1, 2)),
           metric = "ROC")
```

There are a number of other nonlinear kernels that can be used, with different hyperparameters that can be tuned. Without going into details about the different kernels, some important examples are:

- **method = "svmPoly**: polynomial kernel. The tuning parameters are `degree` (the polynomial degree, e.g. 3 for a cubic polynomial), `scale` (scale) and C (regularisation).
- **method = "svmRadialCost**: radial basis/Gaussian kernel. The only tuning parameter is C (regularisation).
- **method = "svmRadialSigma**: radial basis/Gaussian kernel with tuning of σ. The tuning parameters are C (regularisation) and `sigma` (σ).
- **method = "svmSpectrumString**: spectrum string kernel. The tuning parameters are C (regularisation) and `length` (length).

Exercise 9.27. Fit an SVM to the `wine` data, using all variables (except `type`) as explanatory variables, using a kernel of your choice. Evaluate its performance using repeated 10-fold cross-validation. What is the best AUC that you can get by tuning the model parameters?
Exercise 9.28. In this exercise, you will SVM regression models to the bacteria.csv data to see how OD changes with Time.

1. Fit an SVM, using the data from observations 45 to 90 of the data frame, as in the example in Section 9.3.3. Then make predictions for all observations in the dataset. Plot the actual OD values along with your predictions. Does the model extrapolate well?

2. Now, fit an SVM using the data from observations 20 to 120 of the data frame. Then make predictions for all observations in the dataset. Does this improve the model’s ability to extrapolate?

Exercise 9.29. Fit SVM classifiers with different kernels to the seeds data from Section 4.9, using Variety as the response variable and Kernel_length and Compactness as explanatory variables. Plot the resulting decision boundaries, as in Section 9.1.8. Do they seem reasonable to you?

9.5.7 Nearest neighbours classifiers

In classification problems with numeric explanatory variables, a natural approach to finding the class of a new observation is to look at the classes of neighbouring observations, i.e. of observations that are “close” to it in some sense. This requires a distance measure, to measure how close observations are. A kNN classifier classifies the new observations by letting the k Nearest Neighbours – the k points that are the closest to the observation – “vote” about the class of the new observation. As an example, if $k = 3$, two of the three closest neighbours belong to class A, and one of the three closest neighbours belongs to class B, then the new observation will be classified as A. If we like, we can also use the proportion of different classes among the nearest neighbours to get predicted probabilities of the classes (in our example: 2/3 for A, 1/3 for B).

What makes kNN appealing is that it doesn’t require a complicated model - instead, we simply compare observations to each other. A major downside is that we have to compute the distance between each new observations and all observations in the training data, which can be time-consuming if you have large datasets. Moreover, we consequently have to store the training data indefinitely, as it is used each time we use the model for prediction. This can cause problems e.g. if the data are of a kind that falls under the European GDPR regulation, which limits how long data can be stored, and for what purpose.

A common choice of distance measure, which is the default when we set method = "knn" in train, is the common Euclidean distance. We need to take care to standardise our variables before using it, as variables with a high variance otherwise automatically will contribute more to the Euclidean distance. Unlike in regularised regression, caret does not do this for us. Instead, we must provide the argument preProcess = c("center", "scale") to train.
An important choice in kNN is what value to use for the parameter \(k \). If \(k \) is too small, we use too little information, and if \(k \) is too large, the classifier will become prone to classify all observations as belonging to the most common class in the training data. \(k \) is usually chosen using cross-validation or bootstrapping. To have caret find a good choice of \(k \) for us (like we did with \(\lambda \) in regularised regression models), we use the argument `tuneLength` in `train`, e.g. `tuneLength = 15` to try 15 different values of \(k \).

By now, I think you’ve seen enough examples of how to fit models in caret that you can figure out how to fit a model with knn on your own (using the information above, of course). In the next exercise, you will give kNN a go, using the wine data.

Exercise 9.30. Fit a kNN classification model to the wine data, using pH, alcohol, fixed.acidity, and residual.sugar as explanatory variables. Evaluate its performance using 10-fold cross-validation, using AUC to choose the best \(k \). Is it better than the logistic regression models that you fitted in Exercise 9.5?

Exercise 9.31. Fit a kNN classifier to the seeds data from Section 4.9, using Variety as the response variable and Kernel_length and Compactness as explanatory variables. Plot the resulting decision boundaries, as in Section 9.1.8. Do they seem reasonable to you?

9.6 Forecasting time series

A time series, like those we studied in Section 4.6, is a series of observations sorted in time order. The goal of time series analysis is to model temporal patterns in data. This allows us to take correlations between observations into account (today’s stock prices are correlated to yesterday’s), to capture seasonal patterns (ice cream sales always increase during the summer), and to incorporate those into predictions, or forecasts, for the future. This section acts as a brief introduction to how this can be done.

9.6.1 Decomposition

In Section 4.6.5 we saw how time series can be decomposed into three components:

- A **seasonal** component, describing recurring seasonal patterns,
- A **trend** component, describing a trend over time,
- A **remainder** component, describing random variation.

Let’s have a quick look at how to do this in R, using the a10 data from fpp2:
The \texttt{stl} function uses repeated LOESS smoothing to decompose the series. The \texttt{s.window} parameter lets us set the length of the season in the data. We can set it to "periodic" to have \texttt{stl} find the periodicity of the data automatically:

\begin{verbatim}
autoplot(stl(a10, s.window = "periodic"))
\end{verbatim}

We can access the different parts of the decomposition as follows:

\begin{verbatim}
a10_stl <- stl(a10, s.window = "periodic")
a10_stl$time.series[,"seasonal"]
a10_stl$time.series[,"trend"]
a10_stl$time.series[,"remainder"]
\end{verbatim}

When modelling time series data, we usually want to remove the seasonal component, as it makes the data structure too complicated. We can then add it back when we use the model for forecasting. We'll see how to do that in the following sections.

9.6.2 Forecasting using ARIMA models

The \texttt{forecast} package contains a large number of useful methods for fitting time series models. Among them is \texttt{auto.arima} which can be used to fit autoregressive integrated moving average (ARIMA) models to time series data. ARIMA models are a flexible class of models that can capture many different types of temporal correlations and patterns. \texttt{auto.arima} helps us select a model that seems appropriate based on historical data, using an in-sample criterion, a version of AIC, for model selection.

\texttt{stlm} can be used to fit a model after removing the seasonal component, and then automatically add it back again when using it for a forecast. The \texttt{modelfunction} argument lets us specify what model to fit. Let's use \texttt{auto.arima} for model fitting through \texttt{stlm}:

\begin{verbatim}
library(forecast)
library(fpp2)

Fit the model after removing the seasonal component:
tsmod <- stlm(a10, s.window = "periodic", modelfunction = auto.arima)
\end{verbatim}

For model diagnostics, we can use \texttt{checkresiduals} to check whether the residuals from the model look like white noise (i.e. look normal):
Check model diagnostics:
checkresiduals(tsmod)

In this case, the variance of the series seems to increase with time, which the model fails to capture. We therefore see more large residuals than what is expected under the model.

Nevertheless, let’s see how we can make a forecast for the next 24 months. The function for this is the aptly named forecast:

```r
# Plot the forecast (with the seasonal component added back)
# for the next 24 months:
forecast(tsmod, h = 24)

# Plot the forecast along with the original data:
autoplot(forecast(tsmod, h = 24))
```

In addition to the forecasted curve, forecast also provides prediction intervals. By default, these are based on an asymptotic approximation. To obtain bootstrap prediction intervals instead, we can add bootstrap = TRUE to forecast:

```r
 autoplot(forecast(tsmod, h = 24, bootstrap = TRUE))
```

The forecast package is designed to work well with pipes. To fit a model using stlm and auto.arima and then plot the forecast, we could have used:

```r
a10 %>% stlm(s.window = "periodic", modelfunction = auto.arima) %>%
  forecast(h = 24, bootstrap = TRUE) %>% autoplot()
```

It is also possible to incorporate seasonal effects into ARIMA models by adding seasonal terms to the model. auto.arima will do this for us if we apply it directly to the data:

```r
a10 %>% auto.arima() %>%
  forecast(h = 24, bootstrap = TRUE) %>% autoplot()
```

For this data, the forecasts from the two approaches are very similar.

In Section 9.3 we mentioned that a common reason for predictive models failing in practical applications is that many processes are non-stationary, so that their patterns change over time. ARIMA model are designed to handle some types of non-stationary, which can make them particularly useful for modelling such processes.

~

Exercise 9.32. Return to the writing dataset from the fma package, that we studied in Exercise 4.15. Remove the seasonal component. Fit an ARIMA model to the
data and use it plot a forecast for the next three years, with the seasonal component added back and with bootstrap prediction intervals.

9.7 Deploying models

The process of making a prediction model available to other users or systems, for instance by running them on a server, is known as deployment. In addition to the need for continuous model evaluation, mentioned in Section 9.3.6, you will also need to check that your R code works as intended in the environment in which you deploy your model. For instance, if you developed your model using R 4.1 and then run it on a server running R 3.6 with out-of-date versions of the packages you used, there is a risk that some of the functions that you use behave differently from what you expected. Maybe something that should be a factor variable becomes a character variable, which breaks that part of your code where you use levels. A lot of the time, small changes are enough to make the code work in the new environment (add a line that converts the variable to a factor), but sometimes large changes can be needed. Likewise, you must check that the model still works after the software is updated on the server.

9.7.1 Creating APIs with plumber

An Application Programming Interface (API) is an interface that lets other systems access your R code - which is exactly what you want when you’re ready to deploy your model. By using the plumber package to create an API (or a REST API, to be more specific), you can let other systems (a web page, a Java script, a Python script, and so on) access your model. Those systems can call your model, sending some input, and then receive its output in different formats, e.g. a JSON list, a csv file, or an image.

We’ll illustrate how this works with a simple example. First, let’s install plumber:

```r
install.packages("plumber")
```

Next, assume that we’ve fitted a model (we’ll use the linear regression model for mtcars that we’ve used several times before). We can use this model to make predictions:

```r
m <- lm(mpg ~ hp + wt, data = mtcars)
predict(m, newdata = data.frame(hp = 150, wt = 2))
```

We would like to make these predictions available to other systems. That is, we’d like to allow other systems to send values of hp and wt to our model, and get predictions in return. To do so, we start by writing a function for the predictions:
m <- lm(mpg ~ hp + wt, data = mtcars)
predictions <- function(hp, wt)
{
 predict(m, newdata = data.frame(hp = hp, wt = wt))
}
predictions(150, 2)

To make this accessible to other systems, we save this function in a script called mtcarsAPI.R (make sure to save it in your working directory), which looks as follows:

```r
# Fit the model:
m <- lm(mpg ~ hp + wt, data = mtcars)

## Return the prediction:
## @param hp
## @param wt
## @post /predictions
function(hp, wt)
{
  predict(m, newdata = data.frame(hp = as.numeric(hp),
                                wt = as.numeric(wt)))
}
```

The only changes that we have made are some additional special comments (#*), which specify what input is expected (parameters `hp` and `wt`) and that the function is called `predictions`. plumber uses this information to create the API. The functions made available in an API are referred to as endpoints.

To make the function available to other systems, we run `pr` as follows:

```r
library(plumber)
pr("mtcarsAPI.R") %>% pr_run(port = 8000)
```

The function will now be available on port 8000 of your computer. To access it, you can open your browser and go to the following URL:

Try changing the values of `hp` and `wt` and see how the returned value changes.

That’s it! As long as you leave your R session running with plumber, other systems will be able to access the model using the URL. Typically, you would run this on a server and not on your personal computer.
9.7. DEPLOYING MODELS

9.7.2 Different types of output

You won’t always want to return a number. Maybe you want to use R to create a plot, send a file, or print some text. Here is an example of an R script, which we’ll save as exampleAPI.R, that returns different types of output - an image, a text, and a downloadable csv file:

```r
#* Plot some random numbers
#* param n The number of points to plot
#* @serializer png
#* @get /plot
function(n = 15) {
    x <- rnorm(as.numeric(n))
    y <- rnorm(as.numeric(n))
    plot(x, y, col = 2, pch = 16)
}

#* Print a message
#* @param name Your name
#* @get /message
function(name = "") {
    list(message = paste("Hello", name, "- I'm happy to see you!"))
}

#* Download the mtcars data as a csv file
#* @serializer csv
#* @get /download
function() {
    mtcars
}
```

After you’ve saved the file in your working directory, run the following to create the API:

```r
library(plumber)
pr("mtcarsAPI.R") %>% pr_run(port = 8000)
```

You can now try the different endpoints:

- http://localhost:8000/plot
- http://localhost:8000/message?name=Oskar
- http://localhost:8000/download

We’ve only scratched the surface of plumber’s capabilities here. A more thorough guide can be found on the official plumber web page at https://www.rplumber.io/
Chapter 10

Advanced topics

This chapter contains brief descriptions of more advanced uses of R. First, we cover more details surrounding packages. We then deal with two topics that are important for computational speed: parallelisation and matrix operations. Finally, there are some tips for how to play well with others (which in this case means using R in combination with programming languages like Python and C++).

After reading this chapter, you will know how to:

- Update and remove R packages,
- Install R packages from other repositories than CRAN,
- Run computations in parallel,
- Perform matrix computations using R,
- Integrate R with other programming languages.

10.1 More on packages

10.1.1 Loading and auto-installing packages

The best way to load R packages is usually to use `library`, as we’ve done in the examples in this book. If the package that you’re trying to load isn’t installed, this will return an error message:

```
library("theWrongPackageName")
```

Alternatively, you can use `require` to load packages. This will only display a warning, but won’t cause your code to stop executing, which usually would be a problem if the rest of the code depends on the package¹!

¹And why else would you load it...?
However, `require` also returns a logical: `TRUE` if the package is installed, and `FALSE` otherwise. This is useful if you want to load a package, and automatically install it if it doesn’t exist.

To load the `beepr` package, and install it if it doesn’t already exist, we can use `require` inside an `if` condition, as in the code chunk below. If the package exists, the package will be loaded (by `require`) and `TRUE` will be returned, and otherwise `FALSE` will be returned. By using `!` to turn `FALSE` into `TRUE` and vice versa, we can make R install the package if it is missing:

```r
if(!require("beepr")) {
  install.packages("beepr"); library(beepr)
  beep(4)
}
```

10.1.2 Updating R and your packages

You can download new versions of R and RStudio following the same steps as in Section 2.1. On Windows, you can have multiple versions of R installed simultaneously.

To update a specific R package, you can use `install.packages`. For instance, to update the `beepr` package, you’d run:

```r
install.packages("beepr")
```

If you make a major update of R, you may have to update most or all of your packages. To update all your packages, you simply run `update.packages()`. If this fails, you can try the following instead:

```r
pkgs <- installed.packages()
pkgs <- pkgs[is.na(pkgs[, "Priority"]), 1]
install.packages(pkgs)
```

10.1.3 Alternative repositories

In addition to CRAN, two important sources for R packages are Bioconductor, which contains a large number of packages for bioinformatics, and GitHub, where many developers post development versions of their R packages (which often contain functions and features not yet included in the version of the package that has been posted on CRAN).

To install packages from GitHub, you need the `devtools` package. You can install it using:

```r
install.packages("devtools")
```

If you for instance want to install the development version of `dplyr` (which you can find at https://github.com/tidyverse/dplyr), you can then run the following:
library(devtools)
install_github("tidyverse/dplyr")

Using development versions of packages can be great, because it gives you the most up-to-date version of packages. Bear in mind that they are development versions though, which means that they can be less stable and have more bugs.

To install packages from Bioconductor, you can start by running this code chunk, which installs the BiocManager package that is used to install Bioconductor packages:

```r
install.packages("BiocManager")
# Install core packages:
library(BiocManager)
install()
```

You can have a look at the list of packages at https://www.bioconductor.org/packages/release/BiocViews.html#___Software

If you for instance find the affyio package interesting, you can then install it using:

```r
library(BiocManager)
install("affyio")
```

10.1.4 Removing packages

This is probably not something that you’ll find yourself doing often, but if you need to uninstall a package, you can do so using `remove.packages`. Perhaps you’ve installed the development version of a package and want to remove it, so that you can install the stable version again? If you for instance want to uninstall the `beepr` package, you’d run the following:

```r
remove.packages("beepr")
```

10.2 Speeding up computations with parallelisation

Modern computers have CPU’s with multiple cores and threads, which allows us to speed up computations by performing them in parallel. Some functions in R do this by default, but far from all do. In this section, we’ll have a look at how to run parallel versions of `for` loops and functionals.

10.2.1 Parallelising for loops

First, we’ll have a look at how to parallelise a `for` loop. We’ll use the `foreach`, `parallel`, and `doParallel` packages, so let’s install them if you haven’t already:

```
library(devtools)
install_github("tidyverse/dplyr")
```

Why though?!
install.packages(c("foreach", "parallel", "doParallel"))

To see how many cores that are available on your machine, you can use `detectCores`:

```r
library(parallel)
detectCores()
```

It is unwise to use all available cores for your parallel computation - you’ll always need to reserve at least one for running RStudio and other applications.

To run the steps of a `for` loop in parallel, we must first use `registerDoParallel` to register the parallel backend to be used. Here is an example where we create 3 workers (and so use 3 cores in parallel) using `registerDoParallel`. When we then use `foreach` to create a `for` loop, these three workers will execute different steps of the loop in parallel. Note that this wouldn’t work if each step of the loop depended on output from the previous step. `foreach` returns the output created at the end of each step of the loop in a `list` (Section 5.2):

```r
library(doParallel)
registerDoParallel(3)

loop_output <- foreach(i = 1:9) %dopar%
{ i^2 }

unlist(loop_output) # Convert the list to a vector
```

If the output created at the end of each iteration is a vector, we can collect the output in a `matrix` object as follows:

```r
library(doParallel)
registerDoParallel(3)

loop_output <- foreach(i = 1:9) %dopar%
{ c(i, i^2) }

matrix(unlist(loop_output), 9, 2, byrow = TRUE)
```

If you have nested loops, you should run the outer loop in parallel, but not the inner loops. The reason for this is that parallelisation only really helps if each step of the loop

4If your CPU has 3 or fewer cores, you should lower this number.
loop takes a comparatively long time to run. In fact, there is a small overhead cost associated with assigning different iterations to different cores, meaning that parallel loops can be slower than regular loops if each iteration runs quickly.

An example where each step often takes a while to run is simulation studies. Let’s rewrite the simulation we used to compute the type I error rates of different versions of the t-test in Section 7.5.2 using a parallel for loop instead. First, we define the function as in Section 7.5.2 (minus the progress bar):

```r
# Load package used for permutation t-test:
library(MKinfer)

# Create a function for running the simulation:
simulate_type_I <- function(n1, n2, distr, level = 0.05, B = 999,
                            alternative = "two.sided", ...)
{
    # Create a data frame to store the results in:
p_values <- data.frame(p_t_test = rep(NA, B),
                           p_perm_t_test = rep(NA, B),
                           p_wilcoxon = rep(NA, B))

    for(i in 1:B)
    {
        # Generate data:
x <- distr(n1, ...)
y <- distr(n2, ...)

        # Compute p-values:
p_values[i, 1] <- t.test(x, y,
                                alternative = alternative)$p.value
p_values[i, 2] <- perm.t.test(x, y,
                              alternative = alternative,
                              R = 999)$perm.p.value
p_values[i, 3] <- wilcox.test(x, y,
                              alternative = alternative)$p.value
    }

    # Return the type I error rates:
    return(colMeans(p_values < level))
}
```

Next, we create a parallel version:

```r
# Register parallel backend:
library(doParallel)
registerDoParallel(3)
```
Create a function for running the simulation in parallel:
simulate_type_I_parallel <- function(n1, n2, distr, level = 0.05,
 B = 999,
 alternative = "two.sided", ...) {

 results <- foreach(i = 1:B) %dopar% {
 # Generate data:
 x <- distr(n1, ...)
 y <- distr(n2, ...)

 # Compute p-values:
 p_val1 <- t.test(x, y,
 alternative = alternative)$p.value
 p_val2 <- perm.t.test(x, y,
 alternative = alternative,
 R = 999)$perm.p.value
 p_val3 <- wilcox.test(x, y,
 alternative = alternative)$p.value

 # Return vector with p-values:
 c(p_val1, p_val2, p_val3)
 }

 # Each element of the results list is now a vector
 # with three elements.
 # Turn the list into a matrix:
 p_values <- matrix(unlist(results), B, 3, byrow = TRUE)

 # Return the type I error rates:
 return(colMeans(p_values < level))
}

We can now compare how long the two functions take to run using the tools from Section 6.6 (we'll not use mark in this case, as it requires both functions to yield identical output, which won't be the case for a simulation):

```r

time1 <- system.time(simulate_type_I(20, 20, rlnorm,
  B = 999, sdlog = 3))
time2 <- system.time(simulate_type_I_parallel(20, 20, rlnorm,
  B = 999, sdlog = 3))

# Compare results:
```
As you can see, the parallel function is considerably faster. If you have more cores, you can try increasing the value in `registerDoParallel` and see how that affects the results.

10.2.2 Parallelising functionals

The `parallel` package contains parallelised versions of the `apply` family of functions, with names like `parApply`, `parLapply`, and `mclapply`. Which of these that you should use depends in part on your operating system, as different operating systems handle multicore computations differently. Here is the first example from Section 6.5.3, run in parallel with 3 workers:

```r
# Non-parallel version:
lapply(airquality, function(x) { (x-mean(x))/sd(x) })

# Parallel version for Linux/Mac:
library(parallel)
mclapply(airquality, function(x) { (x-mean(x))/sd(x) }, mc.cores = 3)

# Parallel version for Windows (a little slower):
library(parallel)
myCluster <- makeCluster(3)
parLapply(myCluster, airquality, function(x) { (x-mean(x))/sd(x) })
stopCluster(myCluster)
```

Similarly, the `furrr` package lets just run `purrr`-functionals in parallel. It relies on a package called `future`. Let’s install them both:

```r
install.packages(c("future", "furrr"))
```

To run functionals in parallel, we load the `furrr` package and use `plan` to set the number of parallel workers:

```r
library(furrr)
# Use 3 workers:
plan(multisession, workers = 3)
```

We can then run parallel versions of functions like `map` and `imap`, by using functions from `furrr` with the same names, only with `future_` added at the beginning. Here is the first example from Section 6.5.3, run in parallel:

```r
library(magrittr)
airquality %>% future_map(-(.mean(.))/sd(.))
```
Just as for `for` loops, parallelisation of functionals only really helps if each iteration of the functional takes a comparatively long time to run (and so there is no benefit to using parallelisation in this particular example).

10.3 Linear algebra and matrices

Linear algebra is the beating heart of many statistical methods. R has a wide range of functions for creating and manipulating matrices, and doing matrix algebra. In this section, we’ll have a look at some of them.

10.3.1 Creating matrices

To create a `matrix` object, we can use the `matrix` function. It always coerces all elements to be of the same type (Section 5.1):

```r
# Create a 3x2 matrix, one column at a time:
matrix(c(2, -1, 3, 1, -2, 4), 3, 2)
# Create a 3x2 matrix, one row at a time:
# (No real need to include line breaks in the vector with
# the values, but I like to do so to see what the matrix
# will look like!)
matrix(c(2, -1,
       3, 1,
       -2, 4), 3, 2, byrow = TRUE)
```

Matrix operations require the dimension of the matrices involved to match. To check the dimension of a `matrix`, we can use `dim`:

```r
A <- matrix(c(2, -1, 3, 1, -2, 4), 3, 2)
dim(A)
```

To create a unit matrix (all 1’s) or a zero matrix (all 0’s), we use `matrix` with a single value in the first argument:

```r
# Create a 3x3 unit matrix:
matrix(1, 3, 3)
# Create a 2x3 zero matrix:
matrix(0, 2, 3)
```

The `diag` function has three uses. First, it can be used to create a diagonal matrix (if we supply a vector as input). Second, it can be used to create an identity matrix (if we supply a single number as input). Third, it can be used to extract the diagonal from a square matrix (if we supply a matrix as input). Let’s give it a go:
10.3. LINEAR ALGEBRA AND MATRICES

Create a diagonal matrix with 2, 4, 6 along the diagonal:
\texttt{\texttt{diag}(c(2, 4, 6))}

Create a 9x9 identity matrix:
\texttt{\texttt{diag}(9)}

Create a square matrix and then extract its diagonal:
\texttt{\texttt{A} <- matrix(1:9, 3, 3)}
\texttt{\texttt{A} \texttt{diag}(\texttt{A})}

Similarly, we can use \texttt{\texttt{lower.tri}} and \texttt{\texttt{upper.tri}} to extract a matrix of \texttt{logical} values, describing the location of the lower and upper triangular part of a matrix:

\texttt{\texttt{# Create a matrix_}}
\texttt{\texttt{A} <- matrix(1:9, 3, 3)}
\texttt{\texttt{A}}

\texttt{\texttt{# Which are the elements in the lower triangular part?}}
\texttt{\texttt{lower.tri(A)}}
\texttt{\texttt{A[lower.tri(A)]}}

\texttt{\texttt{# Set the lower triangular part to 0:}}
\texttt{\texttt{A[lower.tri(A)]} <- 0}
\texttt{\texttt{A}}

To transpose a matrix, use \texttt{t}:
\texttt{t(A)}

Matrices can be combined using \texttt{cbind} and \texttt{rbind}:
\texttt{\texttt{A} <- matrix(c(1:3, 3:1, 2, 1, 3), 3, 3, \texttt{byrow} = \texttt{TRUE}) \# 3x3}
\texttt{\texttt{B} <- matrix(c(2, -1, 3, 1, -2, 4), 3, 2) \# 3x2}

\texttt{\texttt{# Add B to the right of A:}}
\texttt{\texttt{cbind(A, B)}}

\texttt{\texttt{# Add the transpose of B below A:}}
\texttt{\texttt{rbind(A, t(B))}}

\texttt{\texttt{# Adding B below A doesn't work, because the dimensions don't match:}}
\texttt{\texttt{rbind(A, B)}}
10.3.2 Sparse matrices

The Matrix package contains functions for creating and speeding up computations with sparse matrices (i.e. matrices with lots of 0’s), as well as for creating matrices with particular structures. You likely already have it installed, as many other packages rely on it. Matrix distinguishes between sparse and dense matrices:

```r
# Load or/and install Matrix:
if(!require("Matrix")) { install.packages("Matrix"); library(Matrix) }

# Create a dense 8x8 matrix using the Matrix package:
A <- Matrix(1:64, 8, 8)

# Create a copy and randomly replace 40 elements by 0:
B <- A
B[sample(1:64, 40)] <- 0
B

# Store B as a sparse matrix instead:
B <- as(B, "sparseMatrix")
B
```

To visualise the structure of a sparse matrix, we can use `image`:

```r
image(B)
```

An example of a slightly larger, 72 × 72 sparse matrix is given by `CAex`:

```r
data(CAex)
CAex
image(CAex)
```

Matrix contains additional classes for e.g. symmetric sparse matrices and triangular matrices. See `vignette("Introduction", "Matrix")` for further details.

10.3.3 Matrix operations

In this section, we’ll use the following matrices and vectors to show how to perform various matrix operations:

```r
# Matrices:
A <- matrix(c(1:3, 3:1, 2, 1, 3), 3, 3, byrow = TRUE)  # 3x3
B <- matrix(c(2, -1, 3, 1, -2, 4), 3, 2)              # 3x2
C <- matrix(c(4, 1, 1, 2), 2, 2)                       # Symmetric 2x2

# Vectors:
a <- 1:9                                              # Length 9
```
To perform element-wise addition and subtraction with matrices, use + and -:

\[
A + A \\
A - t(A)
\]

To perform element-wise multiplication, use \(\times\):

\[
2 \times A \quad \text{# Multiply all elements by 2} \\
A \times A \quad \text{# Square all elements}
\]

To perform matrix multiplication, use \(%\%\%\). Remember that matrix multiplication is non-commutative, and so the order of the matrices is important:

\[
A \%\%\% B \quad \text{# A is 3x3, B is 3x2} \\
B \%\%\% C \quad \text{# B is 3x2, C is 2x2} \\
B \%\%\% A \quad \text{# Won't work, because B is 3x2 and A 3x3!}
\]

Given the vectors \(a\), \(b\), and \(d\) defined above, we can compute the outer product \(a \otimes b\) using \(%\%\%\%\) and the dot product \(a \cdot d\) by using \(%\%\%\) and \(t\) in the right manner:

\[
a \%\%\% b \quad \text{# Outer product} \\
a \%\%\% t(b) \quad \text{# Alternative way of getting the outer product} \\
t(a) \%\%\% d \quad \text{# Dot product}
\]

To find the inverse of a square matrix, we can use \texttt{solve}. To find the generalised Moore-Penrose inverse of any matrix, we can use \texttt{ginv} from \texttt{MASS}:

\[
solve(A) \\
solve(B) \quad \text{# Doesn't work because B isn't square}
\]

\[
library(MASS) \\
ginv(A) \quad \text{# Same as solve(A), because A is non-singular and square} \\
ginv(B)
\]

\texttt{solve} can also be used to solve equations systems. To solve the equation \(Ax = y\):

\[
solve(A, y)
\]

The eigenvalues and eigenvectors of a square matrix can be found using \texttt{eigen}:

\[
eigen(A) \\
eigen(A) \$values \quad \text{# Eigenvalues only} \\
eigen(A) \$vectors \quad \text{# Eigenvectors only}
\]

The singular value decomposition, QR decomposition, and the Choleski factorisation
of a matrix are computed as follows:

\[
\text{svd}(A) \\
\text{qr}(A) \\
\text{chol}(C)
\]

\text{qr} also provides the rank of the matrix:

\[
\text{qr}(A) \$\text{rank} \\
\text{qr}(B) \$\text{rank}
\]

Finally, you can get the determinant\(^4\) of a matrix using \text{det}:

\[
\text{det}(A)
\]

As a P.S., I’ll also mention the \texttt{matlab} package, which contains functions for running computations using MATLAB-like function calls. This is useful if you want to reuse MATLAB code in R without translating it row-by-row. Incidentally, this also brings us nicely into the next section.

10.4 Integration with other programming languages

R is great for a lot of things, but it is obviously not the best choice for every task. There are a number of packages that can be used to harvest the power of other languages, or to integrate your R code with code that you or others have developed in other programming languages. In this section, we’ll mention a few of them.

10.4.1 Integration with C++

C++ is commonly used to speed up functions, for instance involving loops that can’t be vectorised or parallelised due to dependencies between different iterations. The \texttt{Rcpp} package (Eddelbuettel & Balamuta, 2018) allows you to easily call C++ functions from R, as well as calling R functions from C++. See vignette("Rcpp-introduction", "Rcpp") for details.

An important difference between R and C++ that you should be aware of is that the indexing of vectors (and similar objects) in C++ starts with 0. So the first element of the vector is element 0, the second is element 1, and so forth. Bear this in mind if you pass a vector and a list of indices to C++ functions.

10.4.2 Integration with Python

The \texttt{reticulate} package can be used to call Python functions from R. See vignette("calling_python", "reticulate") for some examples.

\(^4\)Do you \textit{really} need it, though?
Some care has to be taken when sending data back and forth between R and Python. In R, \texttt{NA} is used to represent missing data and \texttt{NaN} (not a number) is used to represent things that should be numbers but aren’t (e.g. the result of computing \texttt{0/0}). Perfectly reasonable! However, for reasons unknown to humanity, popular Python packages like Pandas, NumPy and SciKit-Learn use \texttt{NaN} instead of \texttt{NA} to represent missing data - but only for \texttt{double (numeric)} variables. \texttt{integer} and \texttt{logical} variables have no way to represent missing data in Pandas. Tread gently if there are \texttt{NA} or \texttt{NaN} values in your data.

Like in C++, the indexing of vectors (and similar objects) in Python starts with 0.

10.4.3 Integration with Tensorflow and PyTorch

Tensorflow, Keras and PyTorch are popular frameworks for deep learning. To use Tensorflow or Keras with R, you can use the \texttt{keras} package. See \texttt{vignette("index", "keras")} for an introduction and Chollet & Allaire (2018) for a thorough treatise. Similarly, to use PyTorch with R, use the \texttt{torch} package. In both cases, it can take some tampering to get the frameworks to run on a GPU.

10.4.4 Integration with Spark

If you need to process large datasets using Spark, you can do so from R using the \texttt{sparklyr} package. It can be used both with local and cloud clusters, and (as the name seems to imply) is easy to integrate with \texttt{dplyr}.

Chapter 11

Debugging

In Section 2.10, I gave some general advice about what to do when there is an error in your R code:

1. Read the error message carefully and try to decipher it. Have you seen it before? Does it point to a particular variable or function? Check Section 11.2 of this book, which deals with common error messages in R.

2. Check your code. Have you misspelt any variable or function names? Are there missing brackets, strange commas or invalid characters?

3. Copy the error message and do a web search using the message as your search term. It is more than likely that somebody else has encountered the same problem, and that you can find a solution to it online. This is a great shortcut for finding solutions to your problem. In fact, this may well be the single most important tip in this entire book.

4. Read the documentation for the function causing the error message, and look at some examples of how to use it (both in the documentation and online, e.g. in blog posts). Have you used it correctly?

5. Use the debugging tools presented in Chapter 11, or try to simplify the example that you are working with (e.g. removing parts of the analysis or the data) and see if that removes the problem.

6. If you still can’t find a solution, post a question at a site like Stack Overflow or the RStudio community forums. Make sure to post your code and describe the context in which the error message appears. If at all possible, post a reproducible example, i.e. a piece of code that others can run, that causes the error message. This will make it a lot easier for others to help you.
The debugging tools mentioned in point 5 are an important part of your toolbox, particularly if you’re doing more advanced programming with R.

In this chapter you will learn how to:

- Debug R code,
- Recognise and resolve common errors in R code,
- Interpret and resolve common warning messages in R.

11.1 Debugging

Debugging is the process of finding and removing bugs in your scripts. R and RStudio have several functions that can be used for this purpose. We’ll have a closer look at some of them here.

11.1.1 Find out where the error occurred with `traceback`

If a function returns an error, it is not always clear _where_ exactly the error occurred. Let’s say that we want to compute the correlation between two variables, but have forgotten to give the variables values:

```r
> cor(variable1, variable2)
Error in is.data.frame(y) : object 'variable2' not found
```

Why is the function `is.data.frame` throwing an error? We were using `cor`, not `is.data.frame`!

Functions often make calls to other functions, which in turn make calls the functions, and so on. When you get an error message, the error can have taken place in any one of these functions. To find out in which function the error occurred, you can run `traceback`, which shows the sequence of calls that lead to the error:

```r
> traceback()
2: is.data.frame(y)
1: cor(variable1, variable2)
```

What this tells you is that `cor` makes a call to `is.data.frame`, and that that is where the error occurs. This can help you understand why a function that you weren’t aware that you were calling (`is.data.frame` in this case) is throwing an
error, but won’t tell you why there was an error. To find out, you can use `debug`, which we’ll discuss next.

As a side note, if you’d like to know why and when `cor` called `is.data.frame` you can print the code for `cor` in the Console by typing the function name without parentheses:

```
cor
```

Reading the output, you can see that it makes a call to `is.data.frame` on the 10th line:

```
function (x, y = NULL, use = "everything", method = c("pearson", "kendall", "spearman"))
{
    na.method <- pmatch(use, c("all.obs", "complete.obs", "pairwise.complete.obs", "everything", "na.or.complete"))
    if (is.na(na.method))
        stop("invalid 'use' argument")
    method <- match.arg(method)
    if (is.data.frame(y))
        y <- as.matrix(y)
... 
```

11.1.2 Interactive debugging of functions with `debug`

If you are looking for an error in a script, you can simply run the script one line at a time until the error occurs, to find out where the error is. But what if the error is inside of a function, as in the example above?

Once you know in which function the error occurs, you can have a look inside it using `debug`. `debug` takes a function name as input, and the next time you run that function, an interactive debugger starts, allowing you to step through the function one line at a time. That way, you can find out exactly where in the function the error occurs. We’ll illustrate its use with a custom function:

```
transform_number <- function(x)
{
    square <- x^2
    if(x >= 0) { logx <- log(x) } else { stop("x must be positive") }
    if(x >= 0) { sqrtx <- sqrt(x) } else { stop("x must be positive") }
    return(c(x.squared = square, log = logx, sqrt = sqrtx))
}
```

The function appears to work just fine:
transform_number(2)
transform_number(-1)

However, if we input an NA, an error occurs:
transform_number(NA)

We now run debug:

debug(transform_number)
transform_number(NA)

Two things happen. First, a tab with the code for transform_number opens. Second, a browser is initialised in the Console panel. This allows you to step through the code, by typing one of the following and pressing Enter:

- n to run the next line,
- c to run the function until it finishes or an error occurs,
- a variable name to see the current value of that variable (useful for checking that variables have the intended values),
- Q to quit the browser and stop the debugging.

If you either use n a few times, or c, you can see that the error occurs on line number 4 of the function:

```r
if (x >= 0) { logx <- log(x) } else { stop("x must be positive") }
```

Because this function was so short, you could probably see that already, but for longer and more complex functions, debug is an excellent way to find out where exactly the error occurs.

The browser will continue to open for debugging each time transform_number is run. To turn it off, use undebug:

```r
undebug(transform_number)
```

11.1.3 Investigate the environment with recover

By default, R prints an error message, returns to the global environment and stops the execution when an error occurs. You can use recover to change this behaviour so that R stays in the environment where the error occurred. This allows you to investigate that environment, e.g. to see if any variables have been assigned the wrong values.

```r
transform_number(NA)
recover()
```

This gives you the same list of function calls as traceback (called the function stack), and you can select which of these that you’d like to investigate (in this case there is
only one, which you access by writing 1 and pressing Enter). The environment for
that call shows up in the Environment panel, which in this case shows you that the
local variable x has been assigned the value NA (which is what causes an error when
the condition x >= 0 is checked).

11.2 Common error messages

Some errors are more frequent than others. Below is a list of some of the most
common ones, along with explanations of what they mean, and how to resolve them.

11.2.1 +

If there is a + sign at the beginning of the last line in the Console, and it seems that
your code doesn’t run, that is likely due to missing brackets or quotes. Here is an
example where a bracket is missing:

```
> 1 + 2*(3 + 2
+
```

Type) in the Console to finish the expression, and your code will run. The same
problem can occur if a quote is missing:

```
> myString <- "Good things come in threes
+
```

Type " in the Console to finish the expression, and your code will run.

11.2.2 could not find function

This error message appears when you try to use a function that doesn’t exist. Here
is an example:

```
> age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
> means(age)
Error in means(age) : could not find function "means"
```

This error is either due to a misspelling (in which case you should fix the spelling)
or due to attempting to use a function from a package that hasn’t been loaded (in
which case you should load the package using `library(package_name)`). If you
are unsure which package the function belongs to, doing a quick web search for “R
function_name” usually does the trick.

11.2.3 object not found

R throws this error message if we attempt to use a variable that does not exist:
> name_of_a_variable_that_doesnt_exist + 1 * pi^2
Error: object 'name_of_a_variable_that_doesnt_exist' not found

This error may be due to a spelling error, so check the spelling of the variable name. It is also commonly encountered if you return to an old R script and try to run just a part of it - if the variable is created on an earlier line that hasn’t been run, R won’t find it because it hasn’t been created yet.

11.2.4 cannot open the connection and No such file or directory

This error message appears when you try to load a file that doesn’t exist:

```r
> read.csv("not-a-real-file-name.csv")
Error in file(file, "rt") : cannot open the connection
In addition: Warning message:
In file(file, "rt") :
  cannot open file 'not-a-real-file-name.csv': No such file or directory
```

Check the spelling of the file name, and that you have given the correct path to it (see Section 3.3). If you are unsure about the path, you can use `read.csv(file.choose())`

to interactively search for the file in question.

11.2.5 invalid 'description' argument

When you try to import data from an Excel file, you can run into error messages like:

```r
Error in file(con, "r") : invalid 'description' argument
In addition: Warning message:
In unzip(xlsxFile, exdir = xmlDir) : error 1 in extracting from zip file
```

and

```r
Error: Evaluation error: zip file 'C:\Users\mans\Data\some_file.xlsx' cannot be opened.
```

These usually appear if you have the file open in Excel *at the same time* that you’re trying to import data from it in R. Excel temporarily locks the file so that R can’t open it. Close Excel and then import the data.
11.2.6 missing value where TRUE/FALSE needed

This message appears when a condition in a conditional statement evaluates to NA. Here is an example:

```r
# Define x with values 8, 5, 9, NA
x <- c(8, 5, 9, NA)
for(i in seq_along(x))
{
    if(x[i] > 7) { cat(i, "\n") }
}
```

which yields:

```r
> x <- c(8, 5, 9, NA)
> for(i in seq_along(x))
+ { 
+     if(x[i] > 7) { cat(i, "\n") }
+ }
1
3
Error in if (x[i] > 7) { : missing value where TRUE/FALSE needed
```

The error occurs when i is 4, because the expression x[i] > 7 becomes NA > 7, which evaluates to NA. If statements require that the condition evaluates to either TRUE or FALSE. When this error occurs, you should investigate why you get an NA instead.

11.2.7 unexpected '=' in ...

This message indicates that you have an assignment happening in the wrong place. You probably meant to use == to check for equality, but accidentally wrote = instead, as in this example:

```r
# Define x with values 8, 5, 9, NA
x <- c(8, 5, 9, NA)
for(i in seq_along(x))
{
    if(x[i] = 5) { cat(i, "\n") }
}
```

which yields:

```r
> x <- c(8, 5, 9, NA)
> for(i in seq_along(x))
+ { 
+     if(x[i] = 5) { cat(i, "\n") }
Error: unexpected '=' in:
 "{
```
if(x[i] ="
> }
Error: unexpected ‘}’ in "}

Replace the = by == and your code should run as intended. If you really intended to assign a value to a variable inside the if condition, you should probably rethink that.

11.2.8 attempt to apply non-function

This error occurs when you put parentheses after something that isn’t a function. It is easy to make that mistake e.g. when doing a mathematical computation.

> 1+2(2+3)
Error: attempt to apply non-function

In this case, we need to put a multiplication symbol * between 2 and (to make the code run:

> 1+2*(2+3)
[1] 11

11.2.9 undefined columns selected

If you try to select a column that doesn’t exist from a data frame, this message will be printed. Let’s start by defining an example data frame:

```r
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
purchase <- c(20, 59, 2, 12, 22, 160, 34, 34, 29)
bookstore <- data.frame(age, purchase)
```

If we attempt to access the third column of the data, we get the error message:

> bookstore[,3]
Error in `.data.frame`(bookstore, , 3) : undefined columns selected

Check that you really have the correct column number. It is common to get this error if you have removed columns from your data.

11.2.10 subscript out of bounds

This error message is similar to the last example above, but occurs if you try to access the column in another way:

> bookstore[[3]]
Error in .subset2(x, i, exact = exact) : subscript out of bounds
Check that you really have the correct column number. It is common to get this error if you have removed columns from your data, or if you are running a for loop accessing element \([i, j]\) of your data frame, where either \(i\) or \(j\) is greater than the number of rows and columns of your data.

11.2.11 Object of type ‘closure’ is not subsettable

This error occurs when you use square brackets \([\]\) directly after a function:

\[\begin{align*}
&> x \leftarrow c(8, 5, 9, NA) \\
&> sqrt[x] \\
&\text{Error in sqrt[x] : object of type ‘closure’ is not subsettable}
\end{align*}\]

You probably meant to use parentheses \((\)\) instead. Or perhaps you wanted to use the square brackets on the object returned by the function:

\[\begin{align*}
&> \text{sqrt(x)}[2] \\
&\text{[1] 2.236068}
\end{align*}\]

11.2.12 $ operator is invalid for atomic vectors

This messages is printed when you try to use the $ operator with an object that isn’t a list or a data frame, for instance with a vector. Even though the elements in a vector can be named, you cannot access them using $:

\[\begin{align*}
&> x \leftarrow c(a = 2, b = 3) \\
&> x \\
&a b \\
&2 3 \\
&> x$a \\
&\text{Error in x$a : $ operator is invalid for atomic vectors}
\end{align*}\]

If you need to access the element named a, you can do so using bracket notation:

\[\begin{align*}
&> x["a"] \\
&a \\
&2
\end{align*}\]

Or use a data frame instead:

\[\begin{align*}
&> x \leftarrow \text{data.frame(a = 2, b = 3)} \\
&> x$a \\
&\text{[1] 2}
\end{align*}\]

11.2.13 (list) object cannot be coerced to type ‘double’

This error occurs when you try to convert the elements of a list to numeric. First, we create a list:

\[\begin{align*}
&> x <- c(8, 5, 9, NA) \\
&> \text{sqrt[x]} \\
&\text{Error in sqrt[x] : object of type ‘closure’ is not subsettable}
\end{align*}\]
CHAPTER 11. DEBUGGING

x <- list(a = c("1", "2", "3"),
 b = c("1", "4", "1889"))

If we now try to apply `as.numeric` we get the error:
```r
> as.numeric(x)
Error: 'list' object cannot be coerced to type 'double'
```

You can apply `unlist` to collapse the list to a vector:
```r
as.numeric(unlist(x))
```

You can also use `lapply` (see Section 6.5):
```r
lapply(x, as.numeric)
```

11.2.14 arguments imply differing number of rows

This message is printed when you try to create a data frame with different numbers of rows for different columns, like in this example, where `a` has 3 rows and `b` has 4:
```r
> x <- data.frame(a = 1:3, b = 6:9)
Error in data.frame(a = 1:3, b = 6:9) :
  arguments imply differing number of rows: 3, 4
```

If you really need to create an object with different numbers of rows for different columns, create a list instead:
```r
x <- list(a = 1:3, b = 6:9)
```

11.2.15 non-numeric argument to a binary operator

This error occurs when you try to use mathematical operators with non-numerical variables. For instance, it occurs if you try to add `character` variables:
```r
> "Hello" + "World"
Error in "Hello" + "world" : non-numeric argument to binary operator
```

If you want to combine `character` variables, use `paste` instead:
```r
paste("Hello", "world")
```

11.2.16 non-numeric argument to mathematical function

This error message is similar the previous one, and appears when you try to apply a mathematical function, like `log` or `exp` to non-numerical variables:
```r
> log("1")
Error in log("1") : non-numeric argument to mathematical function
```
Make sure that the data you are inputting doesn’t contain character variables.

11.2.17 cannot allocate vector of size ...

This message is shown when you’re trying to create an object that would require more RAM than is available. You can try to free up RAM by closing other programs and removing data that you don’t need using rm (see Section 5.14). Also check your code so that you don’t make copies of your data, which takes up more RAM. Replacing base R and dplyr code for data wrangling with data.table code can also help, as data.table uses considerably less RAM for most tasks.

11.2.18 Error in plot.new() : figure margins too large

This error occurs when your Plot panel (or file, if you are saving your plot as a graphics file) is too small to fit the graphic that you’re trying to create. Enlarge your Plot panel (or increase the size of the graphics file) and run the code again.

11.2.19 Error in .Call.graphics(C_palette2, .Call(C_palette2, NULL)) : invalid graphics state

This error can happen when you create plots with ggplot2. You can usually solve it by running dev.off() to close the previous plot window. In rare cases, you may have to reinstall ggplot2 (see Section 10.1).

11.3 Common warning messages

11.3.1 replacement has ... rows ...

This occurs when you try to assign values to rows in a data frame, but the object you are assigning to them has a different number of rows. Here is an example:

```r
> x <- data.frame(a = 1:3, b = 6:8)
> y <- data.frame(a = 4:5, b = 10:11)
> x[3,] <- y
```

Warning messages:

1: In `[<-.data.frame`(`*tmp*`, 3, , value = list(a = 4:5, b = 10:11)) : replacement element 1 has 2 rows to replace 1 rows
2: In `[<-.data.frame`(`*tmp*`, 3, , value = list(a = 4:5, b = 10:11)) : replacement element 2 has 2 rows to replace 1 rows

You can fix this e.g. by changing the numbers of rows to place the data in:

```r
x[3:4,] <- y
```
11.3.2 the condition has length > 1 and only the first element will be used

This warning is thrown when the condition in a conditional statement is a vector rather than a single value. Here is an example:

```r
> x <- 1:3
> if(x == 2) { cat("Two!") }
Warning message:
In if (x == 2) {
  the condition has length > 1 and only the first element will be used
```

Only the first element of the vector is used for evaluating the condition. See if you can change the condition so that it doesn’t evaluate to a vector. If you actually want to evaluate the condition for all elements of the vector, either collapse it using any or all or wrap it in a loop:

```r
x <- 1:3
if(any(x == 2)) { cat("Two!") }
for(i in seq_along(x))
{
  if(x[i] == 2) { cat("Two!") }
}
```

11.3.3 number of items to replace is not a multiple of replacement length

This error occurs when you try to assign too many values to too short a vector. Here is an example:

```r
> x <- c(8, 5, 9, NA)
> x[4] <- c(5, 7)
Warning message:
In x[4] <- c(5, 7) :
  number of items to replace is not a multiple of replacement length
```

Don’t try to squeeze more values than can fit into a single element! Instead, do something like this:

```r
x[4:5] <- c(5, 7)
```

11.3.4 longer object length is not a multiple of shorter object length

This warning is printed e.g. when you try to add two vectors of different lengths together. If you add two vectors of equal length, everything is fine:
11.3. COMMON WARNING MESSAGES

R does element-wise addition, i.e. adds the first element of \(a\) to the first element of \(b\), and so on.

But what happens if we try to add two vectors of different lengths together?

\[
a <- c(1, 2, 3) \\
b <- c(4, 5, 6, 7) \\
a + b
\]

This yields the following warning message:

\[
> a + b \\
[1] 5 7 9 8 \\
Warning message: \\
In a + b : longer object length is not a multiple of shorter object length
\]

R recycles the numbers in \(a\) in the addition, so that the first element of \(a\) is added to the fourth element of \(b\). Was that really what you wanted? Maybe. But probably not.

11.3.5 NAs introduced by coercion

This warning is thrown when you try to convert something that cannot be converted to another data type:

\[
> as.numeric("two") \\
[1] NA \\
Warning message: \\
NAs introduced by coercion
\]

You can try using gsub to manually replace values instead:

\[
x <- c("one", "two") \\
x <- gsub("one", 1, x) \\
as.numeric(x)
\]

11.3.6 package is not available (for R version 4.x.x)

This warning message (which perhaps should be an error message rather than a warning) occurs when you try to install a package that isn’t available for the version of R that you are using.

\[
> install.packages("great_name_for_a_package") \\
Installing package into ‘/home/mans/R/x86_64-pc-linux-gnu-library/4.0’
\]
This can be either due to the fact that you’ve misspelt the package name or that the package isn’t available for your version of R, either because you are using an out-of-date version or because the package was developed for an older version of R. In the former case, consider updating to a newer version of R. In the latter case, if you really need the package you can find and download older version of R at R-project.org - on Windows it is relatively easy to have multiple version of R installed side-by-side.

11.4 Messages printed when installing ggplot2

Below is an excerpt from the output from when I installed the ggplot2 package on a fresh install of R 4.0.0, provided here as a reference for what messages can be expected during a successful installation. The full output covers more than 20 pages. Parts that have been removed are marked by three points: ...

```
> install.packages("ggplot2")
Installing package into ‘/home/mans/R/x86_64-pc-linux-gnu-library/4.0’
(as ‘lib’ is unspecified)

trying URL 'https://cloud.r-project.org/src/contrib/ps_1.3.2.tar.gz'
Content type 'application/x-gzip' length 98761 bytes (96 KB)
=================================================================
downloaded 96 KB

trying URL 'https://cloud.r-project.org/src/contrib/processx_3.4.2.tar.gz'
Content type 'application/x-gzip' length 130148 bytes (127 KB)
=================================================================
downloaded 127 KB

trying URL 'https://cloud.r-project.org/src/contrib/callr_3.4.3.tar.gz'
Content type 'application/x-gzip' length 85802 bytes (83 KB)
```
11.4. MESSAGES PRINTED WHEN INSTALLING GGPLOT2

downloaded 83 KB

... trying URL 'https://cloud.r-project.org/src/contrib/ggplot2_3.3.0.tar.gz'
Content type 'application/x-gzip' length 3031461 bytes (2.9 MB)

downloaded 2.9 MB

* installing *source* package 'ps' ...
 ** package 'ps' successfully unpacked and MD5 sums checked
 ** using staged installation
 ** libs
 gcc -std=gnu99 -g -O2 -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -g -Wall px.c -o px
 gcc -std=gnu99 -I"/usr/share/R/include" -DNDEBUG -fpic -g -O2 -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -g -c init.c -o init.o
 gcc -std=gnu99 -I"/usr/share/R/include" -DNDEBUG -fpic -g -O2 -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -g -c api-common.c -o api-common.o
 gcc -std=gnu99 -I"/usr/share/R/include" -DNDEBUG -fpic -g -O2 -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -g -c common.c -o common.o
 gcc -std=gnu99 -I"/usr/share/R/include" -DNDEBUG -fpic -g -O2 -fstack-protector-strong -Wformat -Werror=format-security
 ...

 gcc -std=gnu99 -shared -L/usr/lib/R/lib -Wl,-Bsymbolic-functions -Wl,-z,relro -o ps.so init.o api-common.o common.o extra.o dummy.o posix.o api-posix.o linux.o api-linux.o
 -L/usr/lib/R/lib -lR
 installing via 'install.libs.R' to
 /home/mans/R/x86_64-pc-linux-gnu-library/4.0/00LOCK-ps/00new/ps
 ** R
 ** inst
 ** byte-compile and prepare package for lazy loading
 ** help
 *** installing help indices
** building package indices
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
 * DONE (ps)

...

* installing *source* package ‘ggplot2’ ...
** package ‘ggplot2’ successfully unpacked and MD5 sums checked
** using staged installation
** R
** data
*** moving datasets to lazyload DB
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
*** copying figures
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
 * DONE (ggplot2)

The downloaded source packages are in
 ‘/tmp/RtmpVck22r/downloaded_packages’
This chapter contains remarks regarding the mathematical background of certain methods and concepts encountered in Chapters 7-9. Sections 12.2 and 12.3 consist of reworked materials from Thulin (2014b). Most of this chapter assumes some familiarity with mathematical statistics, on the level of Casella & Berger (2002) or Liero & Zwanzig (2012).

12.1 Bootstrap confidence intervals

We wish to construct a confidence interval for a parameter θ based on a statistic t. Let t_{obs} be the value of the statistic in the original sample, t_i^* be a bootstrap replicate of the statistic, for $i = 1, 2, ..., B$, and t^* be the mean of the statistic among the bootstrap replicates. Let se^* be the standard error of the bootstrap estimate and $b^* = t^* - t_{\text{obs}}$ be the bias of the bootstrap estimate. For a confidence level $1 - \alpha$ ($\alpha = 0.05$ being a common choice), let $z_{\alpha/2}$ be the $1 - \frac{\alpha}{2}$ quantile of the standard normal distribution (with $z_{0.025} = 1.9599...$). Moreover, let $\theta_{\alpha/2}$ be the $1 - \frac{\alpha}{2}$-quantile of the bootstrap distribution of the t_i^*’s.

The bootstrap normal confidence interval is

$$t_{\text{obs}} - b^* \pm z_{\alpha/2} \cdot se^*.$$

The bootstrap basic confidence interval is

$$\left(2t_{\text{obs}} - \theta_{\alpha/2}, 2t_{\text{obs}} - \theta_{1 - \alpha/2}\right).$$

The bootstrap percentile confidence interval is

$$\left(\theta_{1 - \alpha/2}, \theta_{\alpha/2}\right).$$
For the \textit{bootstrap BCa confidence interval}, let
\[\hat{z} = \Theta^{-1}\left(\frac{\#\{t_i^* < t_{\text{obs}}\}}{B}\right), \]
where \(\Theta\) is the cumulative distribution function for the normal distribution. Let \(t_{(i)}^*\) be the mean of the bootstrap replicates after deleting the \(i\):th replicate, and define the acceleration term
\[\hat{a} = \frac{\sum_{i=1}^{n} (t_i^* - t_{(i-1)}^*)}{6\left(\sum_{i=1}^{n} (t_i^* - t_{(i-1)}^*)^2\right)^{3/2}}. \]
Finally, let
\[\alpha_1 = \Theta\left(\hat{z} + \frac{\hat{z} + z_{1-\alpha/2}}{1 - \hat{a}(\hat{z} + z_{1-\alpha/2})}\right) \]
and
\[\alpha_2 = \Theta\left(\hat{z} + \frac{\hat{z} + z_{\alpha/2}}{1 - \hat{a}(\hat{z} + z_{\alpha/2})}\right). \]
Then the confidence interval is
\[(\theta_{\alpha_1}, \theta_{\alpha_2}). \]

For the \textit{studentised bootstrap confidence interval}, we additionally have an estimate \(se_i^*\) for the standard error of the statistic. Moreover, we compute \(q_i = \frac{t_i^* - t_{\text{obs}}}{se_i^*}\) for each bootstrap replicate, and define \(q_{\alpha/2}\) as the \(1 - \frac{\alpha}{2}\)-quantile of the bootstrap distribution of \(q_i\)'s. The confidence interval is then
\[(t_{\text{obs}} - se_t^* \cdot q_{\alpha/2}, t_{\text{obs}} + se_t^* \cdot q_{1-\alpha/2}) \]

\subsection*{12.2 The equivalence between confidence intervals and hypothesis tests}

Let \(\theta\) be an unknown parameter in the parameter space \(\Theta \subseteq \mathbb{R}\), and let the sample \(x = (x_1, \ldots, x_n) \in \mathcal{X}^n \subseteq \mathbb{R}^n\) be a realisation of the random variable \(X = (X_1, \ldots, X_n)\). In frequentist statistics there is a fundamental connection between interval estimation and point-null hypothesis testing of \(\theta\), which we describe next. We define a confidence interval \(I_{\alpha}(X)\) as a random interval such that its \textit{coverage probability}
\[P_{\theta}(\theta \in I_{\alpha}(X)) = 1 - \alpha \quad \text{for all } \alpha \in (0, 1). \]
Consider a two-sided test of the point-null hypothesis \(H_0(\theta_0) : \theta = \theta_0\) against the alternative \(H_1(\theta_0) : \theta \neq \theta_0\). Let \(\lambda(\theta_0, x)\) denote the p-value of the test. For any \(\alpha \in (0, 1)\), \(H_0(\theta_0)\) is rejected at the level \(\alpha\) if \(\lambda(\theta_0, x) \leq \alpha\). The level \(\alpha\) rejection \textit{region} is the set of \(x\) which lead to the rejection of \(H_0(\theta_0)\):
\[R_{\alpha}(\theta_0) = \{x \in \mathbb{R}^n : \lambda(\theta_0, x) \leq \alpha\}. \]
12.3. TWO TYPES OF P-VALUES

Now, consider a family of two-sided tests with p-values $\lambda(\theta, x)$, for $\theta \in \Theta$. For such a family we can define an \textit{inverted rejection region}

$$Q_\alpha(x) = \{\theta \in \Theta : \lambda(\theta, x) \leq \alpha\}.$$

For any fixed θ_0, $H_0(\theta_0)$ is rejected if $x \in R_\alpha(\theta_0)$, which happens if and only if $\theta_0 \in Q_\alpha(x)$, that is,

$$x \in R_\alpha(\theta_0) \Leftrightarrow \theta_0 \in Q_\alpha(x).$$

If the test is based on a test statistic with a completely specified absolutely continuous null distribution, then $\lambda(\theta_0, X) \sim U(0, 1)$ under $H_0(\theta_0)$ (Liero & Zwanzig, 2012). Then

$$P_{\theta_0}(X \in R_\alpha(\theta_0)) = P_{\theta_0}(\lambda(\theta_0, X) \leq \alpha) = \alpha.$$

Since this holds for any $\theta_0 \in \Theta$ and since the equivalence relation $x \in R_\alpha(\theta_0) \Leftrightarrow \theta_0 \in Q_\alpha(x)$ implies that

$$P_{\theta_0}(X \in R_\alpha(\theta_0)) = P_{\theta_0}(\theta_0 \in Q_\alpha(X)),$$

it follows that the random set $Q_\alpha(x)$ always covers the true parameter θ_0 with probability α. Consequently, letting $Q_\alpha^C(x)$ denote the complement of $Q_\alpha(x)$, for all $\theta_0 \in \Theta$ we have

$$P_{\theta_0}(\theta_0 \in Q_\alpha^C(X)) = 1 - \alpha,$$

meaning that the complement of the inverted rejection region is a $1 - \alpha$ confidence interval for θ. This equivalence between a family of tests and a confidence interval $I_\alpha(x) = Q_\alpha^C(x)$, illustrated in the figure below, provides a simple way of constructing confidence intervals through test inversion, and vice versa.

The figure shows the rejection regions and confidence intervals corresponding to the z-test for a normal mean, for different null means θ and different sample means \bar{x}, with $\sigma = 1$. $H_0(\theta)$ is rejected if (\bar{x}, θ) is in the shaded light grey region. Shown in dark grey is the rejection region $R_{0.05}(\theta) = (-\infty, -1.52) \cup (-0.281, \infty)$ and the confidence interval $I_{0.05}(1/2) = Q_{0.05}^C(1/2) = (-0.120, 1.120)$.

12.3 Two types of p-values

The symmetric argument in perm.t.test and boot.t.test controls how the p-values of the test are computed. In most cases, the difference is not that large:

```
library(MKinfer)
library(ggplot2)
boot.t.test(sleep_total ~ vore, data =
subset(msleep, vore == "carni" | vore == "herbi"),
symmetric = FALSE)
```
boot.t.test(sleep_total ~ vore, data =
 subset(msleep, vore == "carni" | vore == "herbi"),
 symmetric = TRUE)

In other cases, the choice matters more. Below, we will discuss the difference between
the two approaches.

Let $T(X)$ be a test statistic on which a two-sided test of the point-null hypothesis
that $\theta = \theta_0$ is based, and let $\lambda(\theta_0, x)$ denote its p-value. Assume for simplicity that
$T(x) < 0$ implies that $\theta < \theta_0$ and that $T(x) > 0$ implies that $\theta > \theta_0$. We’ll call
the symmetric = FALSE scenario the twice-the-smaller-tail approach to computing
p-values. In it, the first step is to check whether $T(x) < 0$ or $T(x) > 0$. “At least
as extreme as the observed” is in a sense redefined as “at least as extreme as the
observed, in the observed direction”. If the median of the null distribution of $T(X)$
is 0, then, for $T(x) > 0$,

$$P_{\theta_0}(T(X) \geq T(x)|T(x) > 0) = 2 \cdot P_{\theta_0}(T(X) \geq T(x)),$$

i.e. twice the unconditional probability that $T(X) \geq T(x)$. Similarly, for $T(x) < 0$,

$$P_{\theta_0}(T(X) \leq T(x)|T(x) < 0) = 2 \cdot P_{\theta_0}(T(X) \leq T(x)).$$

Moreover,

$$P_{\theta_0}(T(X) \geq T(x)) < P_{\theta_0}(T(X) \leq T(x)) \quad \text{when} \quad T(x) > 0$$

and

$$P_{\theta_0}(T(X) \geq T(x)) > P_{\theta_0}(T(X) \leq T(x)) \quad \text{when} \quad T(x) < 0.$$
Consequently, the p-value using this approach can in general be written as

\[\lambda_{TST}(\theta_0, x) := \min\left(1, 2 \cdot P_{\theta_0}(T(X) \geq T(x)), 2 \cdot P_{\theta_0}(T(X) \leq T(x)) \right). \]

This definition of the p-value is frequently used also in situations where the median of the null distribution of \(T(X) \) is not 0, despite the fact that the interpretation of the p-value as being conditioned on whether \(T(x) < 0 \) or \(T(x) > 0 \) is lost.

At the level \(\alpha \), if \(T(x) > 0 \) the test rejects the hypothesis \(\theta = \theta_0 \) if

\[\lambda_{TST}(\theta_0, x) = \min\left(1, 2 \cdot P_{\theta_0}(T(X) \geq T(x)) \right) \leq \alpha. \]

This happens if and only if the one-sided test of \(\theta \leq \theta_0 \), also based on \(T(X) \), rejects its null hypothesis at the \(\alpha/2 \) level. By the same reasoning, it is seen that the rejection region of a level \(\alpha \) twice-the-smaller-tail test always is the union of the rejection regions of two level \(\alpha/2 \) one-sided tests of \(\theta \leq \theta_0 \) and \(\theta \geq \theta_0 \), respectively. The test puts equal weight to the two types of type I errors: false rejection in the two different directions. The corresponding confidence interval is therefore also equal-tailed, in the sense that the non-coverage probability is \(\alpha/2 \) on both sides of the interval.

Twice-the-smaller-tail p-values are in a sense computed by looking only at one tail of the null distribution. In the alternative approach, \texttt{symmetric = TRUE}, we use strictly two-sided p-values. Such a p-value is computed using both tails, as follows:

\[\lambda_{STT}(\theta_0, x) = P_{\theta_0}\left(|T(X)| \geq |T(x)| \right) = P_{\theta_0}\left(\{ X : T(X) \leq -|T(x)| \} \cup \{ X : T(X) \geq |T(x)| \} \right). \]

Under this approach, the directional type I error rates will in general not be equal to \(\alpha/2 \), so that the test might be more prone to falsely reject \(H_0(\theta_0) \) in one direction than in another. On the other hand, the rejection region of a strictly-two-sided test is typically smaller than its twice-the-smaller-tail counterpart. The coverage probabilities of the corresponding confidence interval \(I_\alpha(X) = (L_\alpha(X), U_\alpha(X)) \) therefore satisfies the condition that

\[P_{\theta}(\theta \in I_\alpha(X)) = 1 - \alpha \quad \text{for all } \alpha \in (0, 1), \]

but not the stronger condition

\[P_{\theta}(\theta < L_\alpha(X)) = P_{\theta}(\theta > U_\alpha(X)) = \alpha/2 \quad \text{for all } \alpha \in (0, 1). \]

For parameters of discrete distributions, strictly two-sided hypothesis tests and confidence intervals can behave very erratically (Thulin & Zwanzig, 2017). Twice-the-smaller tail methods are therefore always preferable when working with count data.

It is also worth noting that if the null distribution of \(T(X) \) is symmetric about 0,

\[P_{\theta_0}(T(X) \geq T(x)) = P_{\theta_0}(T(X) \leq -T(x)). \]
For $T(x) > 0$, unless $T(X)$ has a discrete distribution,

$$
\lambda_{TST}(\theta_0, x) = 2 \cdot P_{\theta_0}(T(X) \geq T(x)) = P_{\theta_0}(T(X) \geq T(x)) + P_{\theta_0}(T(X) \leq -T(x)) = \lambda_{ST}(\theta_0, x),
$$

meaning that the twice-the-smaller-tail and strictly-two-sided approaches coincide in this case. The ambiguity related to the definition of two-sided p-values therefore only arises under asymmetric null distributions.

12.4 Deviance tests

Consider a model with $p = n$, having a separate parameter for each observation. This model will have a perfect fit, and among all models, it attains the maximum achievable likelihood. It is known as the saturated model. Despite having a perfect fit, it is useless for prediction, interpretation and causality, as it is severely overfitted. It is however useful as a baseline for comparison with other models, i.e. for checking goodness-of-fit: our goal is to find a reasonable and useful model with almost as good a fit.

Let $L(\hat{\mu}, y)$ denote the log-likelihood corresponding to the ML-estimate for a model, with estimates $\hat{\theta}_i$. Let $L(y, y)$ denote the log-likelihood for the saturated model, with estimates $\tilde{\theta}_i$. For an exponential dispersion family, i.e. a distribution of the form

$$
f(y_i; \theta_i, \phi) = \exp\left(\frac{y_i \theta_i - b(\theta_i)}{a(\phi)} + c(y_i, \phi)\right),
$$

(the binomial and Poisson distributions being examples of this), we have

$$
L(y, y) - L(\hat{\mu}, y) = \sum_{i=1}^{n} \left(y_i \tilde{\theta}_i - b(\tilde{\theta}_i)\right)/a(\phi) - \sum_{i=1}^{n} \left(y_i \hat{\theta}_i - b(\hat{\theta}_i)\right)/a(\phi).
$$

Typically, $a(\phi) = \phi/\omega_i$, in which case this becomes

$$
\sum_{i=1}^{n} \omega_i \left(y_i (\tilde{\theta}_i - \hat{\theta}_i) - b(\tilde{\theta}_i) + b(\hat{\theta}_i)\right)/\phi = \frac{D(y, \tilde{\mu})}{2\phi},
$$

where the statistic $D(y, \tilde{\mu})$ is called the deviance.

The deviance is essentially the difference between the log-likelihoods of a model and of the saturated model. The greater the deviance, the poorer the fit. It holds that $D(y, \tilde{\mu}) \geq 0$, with $D(y, \tilde{\mu}) = 0$ corresponding to a perfect fit.

Deviance is used to test whether two models are equal. Assume that we have two models:

- M_0, which has p_0 parameters, with fitted values $\hat{\mu}_0$,
• M_1, which has $p_1 > p_0$ parameters, with fitted values $\hat{\mu}_1$.

We say that the models are nested, because M_0 is a special case of M_1, corresponding to some of the p_1 parameters of M_1 being 0. If both models give a good fit, we prefer M_0 because of its (relative) simplicity. We have $D(y, \hat{\mu}_1) \leq D(y, \hat{\mu}_0)$, since simpler models have larger deviances. Assuming that M_1 holds, we can test whether M_0 holds by using the likelihood ratio-test statistic $D(y, \hat{\mu}_0) - D(y, \hat{\mu}_1)$. If we reject the null hypothesis, M_0 fits the data poorly compared to M_1. Otherwise, the fit of M_1 is not significantly better and we prefer M_0 because of its simplicity.

12.5 Regularised regression

Linear regression is a special case of generalised linear regression. Under the assumption of normality, the least squares estimator is the maximum likelihood estimator in this setting. In what follows, we will therefore discuss how the maximum likelihood estimator is modified when using regularisation, bearing in mind that this also includes the ordinary least squares estimator for linear models.

In a regularised GLM, it is not the likelihood $L(\beta)$ that is maximised, but a regularised function $L(\beta) \cdot p(\lambda, \beta)$, where p is a penalty function that typically forces the resulting estimates to be closer to 0, which leads to a stable solution. The shrinkage parameter λ controls the size of the penalty, and therefore how much the estimates are shrunk toward 0. When $\lambda = 0$, we are back at the standard maximum likelihood estimate.

The most popular penalty terms correspond to common L_q-norms. On a log-scale, the function to be maximised is then

$$\ell(\beta) + \lambda \sum_{i=1}^{p} |\beta_i|^q,$$

where $\ell(\beta)$ is the loglikelihood of β and $\sum_{i=1}^{p} |\beta_i|^q$ is the L_q-norm, with $q \geq 0$. This is equivalent to maximising $\ell(\beta)$ under the constraint that $\sum_{i=1}^{p} |\beta_i|^q \leq \frac{1}{h(\lambda)}$, for some increasing positive function h.

In Bayesian estimation, a prior distribution $p(\beta)$ for the parameters β_i is used. The estimates are then computed from the conditional distribution of the β_i given the data, called the posterior distribution. Using Bayes’ theorem, we find that

$$P(\beta|x) \propto L(\beta) \cdot p(\beta),$$

i.e. that the posterior distribution is proportional to the likelihood times the prior. The Bayesian maximum a posteriori estimator (MAP) is found by maximising the above expression (i.e. finding the mode of the posterior). This is equivalent to the estimates from a regularised frequentist model with penalty function $p(\beta)$, meaning
that regularised regression can be motivated both from a frequentist and a Bayesian perspective.

When the L_2 penalty is used, the regularised model is called \textit{ridge regression}, for which we maximise

$$\ell(\beta) + \lambda \sum_{i=1}^{p} \beta_i^2.$$

In a Bayesian context, this corresponds to putting a standard normal prior on the β_i. This method has been invented and reinvented by several authors, from the 1940’s onwards, among them Hoerl & Kennard (1970). The β_i can become very small, but are never pushed all the way down to 0. The name comes from the fact that in a linear model, the OLS estimate is $\hat{\beta} = (X^TX)^{-1}X^Ty$, whereas the ridge estimate is $\hat{\beta} = (X^TX + \lambda I)^{-1}X^Ty$. The λI is the “ridge”.

When the L_1 penalty is used, the regularised model is called the \textit{lasso} (Least Absolute Shrinkage and Selection Operator), for which we maximise

$$\ell(\beta) + \lambda \sum_{i=1}^{p} |\beta_i|.$$

In a Bayesian context, this corresponds to putting a standard Laplace prior on the β_i. For this penalty, as λ increases, more and more β_i become 0, meaning that we can simultaneously perform estimation and variable selection!
Chapter 13

Solutions to exercises

Chapter 2

Exercise 2.1

Type the following code into the Console window:

```
1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10
```

The answer is 3,628,800.

Exercise 2.2

1. To compute the sum and assign it to a, we use:

```
a <- 924 + 124
```

2. To compute the square of a we can use:

```
a*a
```

The answer is 1,098,304.

As you’ll soon see in other examples, the square can also be computed using:

```
a^2
```

Exercise 2.3

1. When an invalid character is used in a variable name, an error message is displayed in the Console window. Different characters will render different error messages. For instance, net-income <- income - taxes yields the error message Error in net - income <- income - taxes : object 'net'
CHAPTER 13. SOLUTIONS TO EXERCISES

not found. This may seem a little cryptic (and it is!), but what it means is that R is trying to compute the difference between the variables net and income, because that is how R interprets net-income, and fails because the variable net does not exist. As you become more experienced with R, the error messages will start making more and more sense (at least in most cases).

2. If you put R code as a comment, it will be treated as a comment, meaning that it won’t run. This is actually hugely useful, for instance when you’re looking for errors in your code - you can comment away lines of code and see if the rest of the code runs without them.

3. Semicolons can be used to write multiple commands on a single line - both will run as if they were on separate lines. If you like, you can add more semicolons to run even more commands.

4. The value to the right is assigned to both variables. Note, however, that any operations you perform on one variable won’t affect the other. For instance, if you change the value of one of them, the other will remain unchanged:

```r
income2 <- taxes2 <- 100
income2; taxes2 # Check that both are 100
taxes2 <- 30 # income2 doesn't change
income2; taxes2 # Check values
```

Exercise 2.4

1. To create the vectors, use c:

```r
height <- c(158, 170, 172, 181, 196)
weight <- c(45, 80, 62, 75, 115)
```

2. To combine the two vectors into a data frame, use `data.frame`

```r
hw_data <- data.frame(height, weight)
```

Exercise 2.5

The vector created using:

```r
x <- 1:5
```

is (1, 2, 3, 4, 5). Similarly,

```r
x <- 5:1
```

gives us the same vector in reverse order: (5, 4, 3, 2, 1). To create the vector (1, 2, 3, 4, 5, 4, 3, 2, 1) we can therefore use:

```r
x <- c(1:5, 4:1)
```
Exercise 2.6

1. To compute the mean height, use the `mean` function:
   ```r
   mean(height)
   ```

2. To compute the correlation between the two variables, use `cor`:
   ```r
   cor(height, weight)
   ```

Exercise 2.7

1. `length` computes the length (i.e. the number of elements) of a vector. `length(height)` returns the value 5, because the vector is 5 elements long.

2. `sort` sorts a vector. The parameter `decreasing` can be used to decide whether the elements should be sorted in ascending (`sort(weights, decreasing = FALSE)`) or descending (`sort(weights, decreasing = TRUE)`) order. To sort the weights in ascending order, we can use `sort(weight)`. Note, however, that the resulting sorted vector won’t be stored in the variable `weight` unless we write `weight <- sort(weight)`!

Exercise 2.8

1. \(\sqrt{\pi} = 1.772454 \ldots\):
   ```r
   sqrt(pi)
   ```

2. \(e^2 \cdot \log(4) = 10.24341 \ldots\):
   ```r
   exp(2)*log(4)
   ```

Exercise 2.9

1. The expression \(1/x\) tends to infinity as \(x \to 0\), and so R returns \(\infty\) as the answer in this case:
   ```r
   1/0
   ```

2. The division \(0/0\) is undefined, and R returns `NaN`, which stands for Not a Number:
   ```r
   0/0
   ```

3. \(\sqrt{-1}\) is undefined (as long as we stick to real numbers), and so R returns `NaN`. The `sqrt` function also provides an error message saying that `NaN` values were produced.
   ```r
   sqrt(-1)
   ```
If you want to use complex numbers for some reason, you can write the complex number $a + bi$ as `complex(1, a, b)`. Using complex numbers, the square root of -1 is i:

```r
sqrt(complex(1, -1, 0))
```

Exercise 2.10

1. View the documentation, where the data is described:
   ```r
   ?diamonds
   ```

2. Have a look at the structure of the data:
   ```r
   str(diamonds)
   ```
 This shows you the number of observations (53,940) and variables (10), and the variable types. There are three different data types here: `num` (numerical), `Ord.factor` (ordered factor, i.e. an ordered categorical variable) and `int` (integer, a numerical variable that only takes integer values).

3. To compute the descriptive statistics, we can use:
   ```r
   summary(diamonds)
   ```
 In the summary, missing values show up as NA’s. There are no NA’s here, and hence no missing values.

Exercise 2.11

```r
ggplot(msleep, aes(sleep_total, awake)) + geom_point()
```

The points follow a declining line. The reason for this is that at any given time, an animal is either awake or asleep, so the total sleep time plus the awake time is always 24 hours for all animals. Consequently, the points lie on the line given by $awake = 24 - sleep_total$.

Exercise 2.12

1.

```r
ggplot(diamonds, aes(carat, price, colour = cut)) + geom_point() +
  xlab("Weight of diamond (carat)") +
  ylab("Price (USD)")
```

2. We can change the opacity of the points by adding an `alpha` argument to `geom_point`. This is useful when the plot contains overlapping points:
```r
ggplot(diamonds, aes(carat, price, colour = cut)) +
geom_point(alpha = 0.25) +
xlab("Weight of diamond (carat)") +
ylab("Price (USD)")
```

Exercise 2.13

1. To set different shapes for different values of `cut` we use:
```r
ggplot(diamonds, aes(carat, price, colour = cut, shape = cut)) +
geom_point(alpha = 0.25) +
xlab("Weight of diamond (carat)") +
ylab("Price (USD)")
```

2. We can then change the size of the points as follows. The resulting figure is unfortunately not that informative in this case.
```r
ggplot(diamonds, aes(carat, price, colour = cut, shape = cut, size = x)) +
geom_point(alpha = 0.25) +
xlab("Weight of diamond (carat)") +
ylab("Price (USD)")
```

Exercise 2.14

Using the `scale_axis_log10` options:
```r
ggplot(msleep, aes(bodywt, brainwt, colour = sleep_total)) +
geom_point() +
xlab("Body weight (logarithmic scale)") +
ylab("Brain weight (logarithmic scale)") +
scale_x_log10() +
scale_y_log10()
```

Exercise 2.15

1. We use `facet_wrap(~ cut)` to create the facetting:
```r
ggplot(diamonds, aes(carat, price)) +
geom_point() +
facet_wrap(~ cut)
```

2. To set the number of rows, we add an `nrow` argument to `facet_wrap`:
```r
ggplot(diamonds, aes(carat, price)) +
geom_point() +
facet_wrap(~ cut, nrow = 5)
```
Exercise 2.16

1.
```r
ggplot(diamonds, aes(cut, price)) +
    geom_boxplot()
```

2. To change the colours of the boxes, we add `colour` (outline colour) and `fill` (box colour) arguments to `geom_boxplot`:
```r
ggplot(diamonds, aes(cut, price)) +
    geom_boxplot(colour = "magenta", fill = "turquoise")
```
(No, I don’t really recommend using this particular combination of colours.)

3. `reorder(cut, price, median)` changes the order of the `cut` categories based on their median `price` values.
```r
ggplot(diamonds, aes(reorder(cut, price, median), price)) +
    geom_boxplot(colour = "magenta", fill = "turquoise")
```

4. `geom_jitter` can be used to plot the individual observations on top of the histogram. Because there are so many observations in this dataset, we must set a small size and a low alpha in order not to cover the boxes completely.
```r
ggplot(diamonds, aes(reorder(cut, price), price)) +
    geom_boxplot(colour = "magenta", fill = "turquoise") +
    geom_jitter(size = 0.1, alpha = 0.2)
```

Exercise 2.17

1.
```r
ggplot(diamonds, aes(price)) +
    geom_histogram()
```

2. Next, we facet the histograms using `cut`:
```r
ggplot(diamonds, aes(price)) +
    geom_histogram() +
    facet_wrap(~ cut)
```

3. Finally, by reading the documentation `?geom_histogram` we find that we can add outlines using the `colour` argument:
```r
ggplot(diamonds, aes(price)) +
    geom_histogram(colour = "black") +
```
Exercise 2.18

1. ```
ggplot(diamonds, aes(cut)) +
 geom_bar()
```  

2. To set different colours for the bars, we can use `fill`, either to set the colours manually or using default colours (by adding a colour aesthetic):

```
Set colours manually:
ggplot(diamonds, aes(cut)) +
 geom_bar(fill = c("red", "yellow", "blue", "green", "purple"))

Use defaults:
ggplot(diamonds, aes(cut, fill = cut)) +
 geom_bar()
```

3. `width` lets us control the bar width:

```
ggplot(diamonds, aes(cut, fill = cut)) +
 geom_bar(width = 0.5)
```

4. By adding `fill = clarity` to `aes` we create stacked bar charts:

```
ggplot(diamonds, aes(cut, fill = clarity)) +
 geom_bar()
```

5. By adding `position = "dodge"` to `geom_bar` we obtain grouped bar charts:

```
ggplot(diamonds, aes(cut, fill = clarity)) +
 geom_bar(position = "dodge")
```

6. `coord_flip` flips the coordinate system, yielding a horizontal bar plot:

```
ggplot(diamonds, aes(cut)) +
 geom_bar() +
 coord_flip()
```

Exercise 2.19

To save the png file, use

```r
myPlot <- ggplot(msleep, aes(sleep_total, sleep_rem)) +
 geom_point()
```
Both approaches render a character object with the text `A rainy day in Edinburgh`:

```r
a <- "A rainy day in Edinburgh"
a
class(a)
```

```r
a <- 'A rainy day in Edinburgh'
a
class(a)
```

That is, you are free to choose whether to use single or double quotation marks. I tend to use double quotation marks, because I was raised to believe that double quotation marks are superior in every way (well, that, and the fact that I think that they make code easier to read simply because they are easier to notice).

2. The first two sums are numeric whereas the third is integer.

```r
class(1 + 2) # numeric
class(1L + 2) # numeric
class(1L + 2L) # integer
```

If we mix numeric and integer variables, the result is a numeric. But as long as we stick to just integer variables, the result is usually an integer. There are exceptions though - computing `2L/3L` won’t result in an integer because… well, because it’s not an integer.

3. When we run "Hello" + 1 we receive an error message:

```r
> "Hello" + 1
Error in "Hello" + 1 : non-numeric argument to binary operator
```

In R, binary operators are mathematical operators like +, -, *, and / that takes two numbers and returns a number. Because "Hello" is a character and not a numeric, it fails in this case. So, in English the error message reads Error in "Hello" + 1 : trying to perform addition with something that is not a number. Maybe you know a bit of algebra and want to say hey, we can add characters together, like
in $a^2 + b^2 = c^2$. Which I guess is correct. But R doesn’t do algebraic calculations, but numerical ones - that is, all letters involved in the computations must represent actual numbers. $a^2 + b^2 = c^2$ will work only if $a$, $b$ and $c$ all have numbers assigned to them.

4. Combining numeric and a logical variables turns out to be very useful in some problems. The result is always numeric, with FALSE being treated as the number 0 and TRUE being treated as the number 1 in the computations:

```r
class(FALSE * 2)
class(TRUE + 1)
```

**Exercise 3.2**

The functions return information about the data frame:

```r
ncol(airquality) # Number of columns of the data frame
nrow(airquality) # Number of rows of the data frame
dim(airquality) # Number of rows, followed by number of columns
names(airquality) # The name of the variables in the data frame
row.names(airquality) # The name of the rows in the data frame
 # (indices unless the rows have been named)
```

**Exercise 3.3**

To create the matrices, we need to set the number of rows `nrow`, the number of columns `ncol` and whether to use the elements of the vector `x` to fill the matrix by rows or by columns (`byrow`). To create

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

we use:

```r
x <- 1:6
matrix(x, nrow = 2, ncol = 3, byrow = TRUE)
```

And to create

$$\begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

we use:
CHAPTER 13. SOLUTIONS TO EXERCISES

x <- 1:6
matrix(x, nrow = 3, ncol = 2, byrow = FALSE)

We’ll do a deep-dive on matrix objects in Section 10.3.

Exercise 3.4

1. In the \([i, j]\) notation, \(i\) is the row number and \(j\) is the column number. In this case, `airquality[, 3]`, we have \(j=3\) and therefore asks for the 3rd column, not the 3rd row. To get the third row, we’d use `airquality[3,]` instead.

2. To extract the first five rows, we can use:
   
   ```r
 airquality[1:5,]
 # or
 airquality[c(1, 2, 3, 4, 5),]
   ```

3. First, we use `names(airquality)` to check the column numbers of the two variables. Wind is column 3 and Temp is column 4, so we can access them using `airquality[,3]` and `airquality[,4]` respectively. Thus, we can compute the correlation using:
   
   ```r
 cor(airquality[,3], airquality[,4])
   ```

   Alternatively, we could refer to the variables using the column names:
   
   ```r
 cor(airquality[,"Wind"], airquality[,"Temp"])
   ```

4. To extract all columns except Temp and Wind, we use a minus sign - and a vector containing their indices:
   
   ```r
 airquality[, -c(3, 4)]
   ```

Exercise 3.5

1. To add the new variable, we can use:
   
   ```r
 bookstore$rev_per_minute <- bookstore$purchase / bookstore$visit_length
   ```

2. By using `View(bookstore)` or looking at the data in the Console window using `bookstore`, we see that the customer in question is on row 6 of the data. To replace the value, we can use:
   
   ```r
 bookstore$purchase[6] <- 16
   ```
   
   Note that the value of `rev_per_minute` hasn’t been changed by this operation. We will therefore need to compute it again, to update its value:
# We can either compute it again for all customers:
bookstore$rev_per_minute <- bookstore$purchase / bookstore$visit_length

# ...or just for customer number 6:

Exercise 3.6

1. The coldest day was the day with the lowest temperature:

```
airquality[which.min(airquality$Temp),]
```

We see that the 5th day in the period, May 5, was the coldest, with a temperature of 56 degrees Fahrenheit.

2. To find out how many days the wind speed was greater than 17 mph, we use

```
sum(airquality$Wind > 17)
```

Because there are so few days fulfilling this condition, we could also easily have solved this by just looking at the rows for those days and counting them:

```
airquality[airquality$Wind > 17,]
```

3. Missing data are represented by `NA` values in R, and so we wish to check how many `NA` elements there are in the `Ozone` vector. We do this by combining `is.na` and `sum` and find that there are 37 missing values:

```
sum(is.na(airquality$Ozone))
```

4. In this case, we need to use an ampersand `&` sign to combine the two conditions:

```
sum(airquality$Temp < 70 & airquality$Wind > 10)
```

We find that there are 22 such days in the data.

Exercise 3.7

We should use the `breaks` argument to set the interval bounds in `cut`:

```
airquality$TempCat <- cut(airquality$Temp,
breaks = c(50, 70, 90, 110))
```

To see the number of days in each category, we can use `summary`:

```
summary(airquality$TempCat)```
CHAPTER 13. SOLUTIONS TO EXERCISES

Exercise 3.8

1. The variable \(X\) represents the empty column between Visit and VAS. In the \(X.1\) column the researchers have made comments on two rows (rows 692 and 1153), causing R to read this otherwise empty column. If we wish, we can remove these columns from the data using the syntax from Section 3.2.1:

\[
\text{vas} \leftarrow \text{vas}[\, -\text{c}(4, 6)\]
\]

2. We remove the \(\text{sep} = ";"\) argument:

\[
\text{vas} \leftarrow \text{read.csv(file_path, dec = ",", skip = 4)}
\]

...and receive the following error message:

```
Error in read.table(file = file, header = header, sep = sep, quote = quote, :
duplicate 'row.names' are not allowed
```

By default, \texttt{read.csv} uses commas, , as column delimiters. In this case it fails to read the file, because it uses semicolons instead.

3. Next, we remove the \(\text{dec} = "\;"\) argument:

\[
\text{vas} \leftarrow \text{read.csv(file_path, sep = ";", skip = 4)}
\]

\texttt{str(vas)}

\texttt{names(vas)}

\texttt{read.csv} reads the data without any error messages, but now \texttt{VAS} has become a \texttt{character} vector. By default, \texttt{read.csv} assumes that the file uses decimal points rather than decimals commas. When we don’t specify that the file has decimal commas, \texttt{read.csv} interprets 0,4 as text rather than a number.

4. Next, we remove the \(\text{skip} = 4\) argument:

\[
\text{vas} \leftarrow \text{read.csv(file_path, sep = ";", dec = ",", skip = 4)}
\]

\texttt{str(vas)}

\texttt{names(vas)}

\texttt{read.csv} looks for column names on the first row that it reads. \(\text{skip} = 4\) tells the function to skip the first 4 rows of the .\texttt{csv} file (which in this case were blank or contain other information about the data). When it doesn’t skip those lines, the only text on the first row is \texttt{Data updated 2020-04-25}. This then becomes the name of the first column, and the remaining columns are named \texttt{X}, \texttt{X.1}, \texttt{X.2}, and so on.

5. Finally, we change \(\text{skip} = 4\) to \(\text{skip} = 5\):

\[
\text{vas} \leftarrow \text{read.csv(file_path, sep = ",", dec = ",", skip = 5)}
\]

\texttt{str(vas)}

\texttt{names(vas)}

In this case, \texttt{read.csv} skips the first 5 rows, which includes row 5, on which the
variable names are given. It still looks for variable names on the first row that it reads though, meaning that the data values from the first observation become variable names instead of data points. An X is added at the beginning of the variable names, because variable names in R cannot begin with a number.

Exercise 3.9

1. First, set `file_path` to the path to `projects-email.xlsx`. Then we can use `read.xlsx` from the `openxlsx` package. The argument `sheet` lets us select which sheet to read:

   ```r
   library(openxlsx)
   emails <- read.xlsx(file_path, sheet = 2)
   View(emails)
   str(emails)
   ``

2. To obtain a vector containing the email addresses without any duplicates, we apply `unique` to the vector containing the e-mail addresses. That vector is called E-mail with a hyphen -. We cannot access it using `emails$E-mail`, because R will interpret that as `email$E-mail`, and neither the vector `email$E` nor the variable `mail` exist. Instead, we can do one of the following:

   ```r
 unique(emails[,3])
 unique(emails$"E-mail")
   ```

**Exercise 3.10**

1. We set `file_path` to the path to `vas-transposed.csv` and then read it:

   ```r
 vast <- read.csv(file_path)
 dim(vast)
 View(vast)
 ``

 It is a data frame with 4 rows and 2366 variables.

2. Adding `row.names = 1` lets us read the row names:

   ```r
   vast <- read.csv(file_path, row.names = 1)
   View(vast)
   ``

   This data frame only contains 2365 variables, because the leftmost column is now the row names and not a variable.

3. `t` lets us rotate the data into the format that we are used to. If we only apply `t` though, the resulting object is a `matrix` and not a `data.frame`. If we want it to be a `data.frame`, we must also make a call to `as.data.frame`:
\texttt{vas <- t(vast)}
\texttt{class(vas)}

\texttt{vas <- as.data.frame(t(vast))}
\texttt{class(vas)}

**Exercise 3.11**

We fit the model and use \texttt{summary} to print estimates and p-values:

\texttt{m <- lm(mpg ~ hp + wt + cyl + am, data = mtcars)}
\texttt{summary(m)}

\texttt{hp} and \texttt{wt} are significant at the 5\% level, but \texttt{cyl} and \texttt{am} are not.

**Exercise 3.12**

We set \texttt{file_path} to the path for \texttt{vas.csv} and read the data as in Exercise 3.8:

\texttt{vas <- read.csv(file_path, sep = ";", dec = ",", skip = 4)}

1. First, we compute the mean VAS for each patient:

\texttt{aggregate(VAS ~ ID, data = vas, FUN = mean)}

2. Next, we compute the lowest and highest VAS recorded for each patient:

\texttt{aggregate(VAS ~ ID, data = vas, FUN = min)}
\texttt{aggregate(VAS ~ ID, data = vas, FUN = max)}

3. Finally, we compute the number of high-VAS days for each patient. One way to do this is to create a \texttt{logical} vector by \texttt{VAS >= 7} and then compute its sum.

\texttt{aggregate((VAS >= 7) ~ ID, data = vas, FUN = sum)}

**Exercise 3.13**

First we load and inspect the data:

\texttt{library(datasauRus)}
\texttt{View(datasaurus_dozen)}

1. Next, we compute summary statistics grouped by \texttt{dataset}:

\texttt{aggregate(cbind(x, y) ~ dataset, data = datasaurus_dozen, FUN = mean)}
\texttt{aggregate(cbind(x, y) ~ dataset, data = datasaurus_dozen, FUN = sd)}

\texttt{by(datasaurus_dozen[, 2:3], datasaurus_dozen$dataset, cor)}
The summary statistics for all datasets are virtually identical.

2. Next, we make scatterplots. Here is a solution using \texttt{ggplot2}:

```r
library(ggplot2)

ggplot(datasaurus_dozen, aes(x, y, colour = dataset)) +
 geom_point() +
 facet_wrap(~ dataset, ncol = 3)
```

Clearly, the datasets are very different! This is a great example of how simply computing summary statistics is not enough. They tell a part of the story, yes, but only a part.

**Exercise 3.14**

First, we load the \texttt{magrittr} package and create \texttt{x}:

```r
library(magrittr)
x <- 1:8
```

1. \texttt{sqrt(mean(x))} can be rewritten as:

```r
x %>% mean %>% sqrt
```

2. \texttt{mean(sqrt(x))} can be rewritten as:

```r
x %>% sqrt %>% mean
```

3. \texttt{sort(x^2-5)[1:2]} can be rewritten as:

```r
x %>% raise_to_power(2) %>% subtract(5) %>% extract(1:2)
```

**Exercise 3.15**

We can use \texttt{inset} to add the new variable:

```r
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
purchase <- c(20, 59, 2, 12, 22, 160, 34, 34, 29)
visit_length <- c(5, 2, 20, 22, 12, 31, 9, 10, 11)
bookstore <- data.frame(age, purchase, visit_length)

library(magrittr)

bookstore %>% inset("rev_per_minute",
 value = .$purchase / .$visit_length)
```
Chapter 13. Solutions to Exercises

Chapter 4

Exercise 4.1

1. We change the background colour of the entire plot to lightblue.

```r
p + theme(panel.background = element_rect(fill = "lightblue"),
plot.background = element_rect(fill = "lightblue"))
```

2. Next, we change the font of the legend to serif.

```r
p + theme(panel.background = element_rect(fill = "lightblue"),
plot.background = element_rect(fill = "lightblue"),
legend.text = element_text(family = "serif"),
legend.title = element_text(family = "serif"))
```

3. We remove the grid:

```r
p + theme(panel.background = element_rect(fill = "lightblue"),
plot.background = element_rect(fill = "lightblue"),
legend.text = element_text(family = "serif"),
legend.title = element_text(family = "serif"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())
```

4. Finally, we change the colour of the axis ticks to orange and increase their width:

```r
p + theme(panel.background = element_rect(fill = "lightblue"),
plot.background = element_rect(fill = "lightblue"),
legend.text = element_text(family = "serif"),
legend.title = element_text(family = "serif"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.ticks = element_line(colour = "orange", size = 2))
```

It doesn’t look all that great, does it? Let’s just stick to the default theme in the remaining examples.

Exercise 4.2

1. We can use the `bw` argument to control the smoothness of the curves:

```r
ggplot(diamonds, aes(carat, colour = cut)) +
 geom_density(bw = 0.2)
```

2. We can fill the areas under the density curves by adding `fill` to the `aes`:

```r
ggplot(diamonds, aes(carat, colour = cut)) +
 geom_density(aes(fill = cut), bw = 0.2)
```
```r
ggplot(diamonds, aes(carat, colour = cut, fill = cut)) +
 geom_density(bw = 0.2)
```

3. Because the densities overlap, it’d be better to make the fill colours slightly transparent. We add `alpha` to the geom:
```r
ggplot(diamonds, aes(carat, colour = cut, fill = cut)) +
 geom_density(bw = 0.2, alpha = 0.2)
```

4. A similar plot can be created using `geom_density_ridges` from the `ggridge` package. Note that you must set `y = cut` in the `aes`, because the densities should be separated by cut.
```r
install.packages("ggridge")
library(ggridge)

ggplot(diamonds, aes(carat, cut, fill = cut)) +
 geom_density_ridges()
```

Exercise 4.3

We use `xlim` to set the boundaries of the x-axis and `bindwidth` to decrease the bin width:
```r
ggplot(diamonds, aes(carat)) +
 geom_histogram(binwidth = 0.01) +
 xlim(0, 3)
```

It appears that carat values that are just above multiples of 0.25 are more common than other values. We’ll explore that next.

Exercise 4.4

1. We set the colours using the `fill` aesthetic:
```r
ggplot(diamonds, aes(cut, price, fill = cut)) +
 geom_violin()
```

2. Next, we remove the legend:
```r
ggplot(diamonds, aes(cut, price, fill = cut)) +
 geom_violin() +
 theme(legend.position = "none")
```

3. We add boxplots by adding an additional `geom` to the plot. Increasing the width of the violins and decreasing the width of the boxplots creates a better figure. We also move the `fill = cut` aesthetic from `ggplot` to `geom_violin`
so that the boxplots use the default colours instead of different colours for each category.

\[
\text{ggplot(diamonds, aes(cut, price)) +}
\text{geom_violin(aes(fill = cut), width = 1.25) +}
\text{geom_boxplot(width = 0.1, alpha = 0.5) +}
\text{theme(legend.position = "none")}
\]

4. Finally, we can create a horizontal version of the figure in the same way we did for boxplots in Section 2.18: by adding `coord_flip()` to the plot:

\[
\text{ggplot(diamonds, aes(cut, price)) +}
\text{geom_violin(aes(fill = cut), width = 1.25) +}
\text{geom_boxplot(width = 0.1, alpha = 0.5) +}
\text{theme(legend.position = "none") +}
\text{coord_flip()}
\]

Exercise 4.5

We can create an interactive scatterplot using:

\[
\text{myPlot <- ggplot(diamonds, aes(x, y,}
\text{ text = paste("Row:" , rownames(diamonds)))) +}
\text{geom_point()}
\text{ggplotly(myPlot)}
\]

There are outliers along the y-axis on rows 24,068 and 49,190. There are also some points for which \(x = 0\). Examples include rows 11,183 and 49,558. It isn’t clear from the plot, but in total there are 8 such points, 7 of which have both \(x = 0\) and \(y = 0\). To view all such diamonds, you can use `filter(diamonds, x==0)`. These observations must be due to data errors, since diamonds can’t have 0 width. The high y-values also seem suspicious - carat is a measure of diamond weight, and if these diamonds really were 10 times longer than others then we would probably expect them to have unusually high carat values as well (which they don’t).

Exercise 4.6

The two outliers are the only observations for which \(y > 20\), so we use that as our condition:

\[
\text{ggplot(diamonds, aes(x, y)) +}
\text{geom_point() +}
\text{geom_text(aes(label = ifelse(y > 20, rownames(diamonds), "")),}
\text{hjust = 1.1)}
\]
Exercise 4.7

# Create a copy of diamonds, then replace x-values greater than 9
# with NA:
diamonds2 <- diamonds
diamonds2[diamonds2$x > 9] <- NA

## Create the scatterplot
ggplot(diamonds2, aes(carat, price, colour = is.na(x))) +
  geom_point()

In this plot, we see that virtually all high carat diamonds have missing x values. This
seems to indicate that there is a systematic pattern to the missing data (which of
course is correct in this case!), and we should proceed with any analyses of x with
cautions.

Exercise 4.8

The code below is an example of what your analysis can look like, with some remarks
as comments:

# Investigate missing data
colSums(is.na(flights2))
# Not too much missing data in this dataset!
View(flights2[is.na(flights2$air_time),])
# Flights with missing data tend to have several missing variables.

# Ridge plots to compare different carriers (boxplots, faceted
# histograms and violin plots could also be used)
library(ggridges)
ggplot(flights2, aes(arr_delay, carrier, fill = carrier)) +
  geom_density_ridges() +
  theme(legend.position = "none") +
  xlim(-50, 250)
# Some airlines (e.g. EV) appear to have a larger spread than others

ggplot(flights2, aes(dep_delay, carrier, fill = carrier)) +
  geom_density_ridges() +
  theme(legend.position = "none") +
  xlim(-15, 100)
# Some airlines (e.g. EV) appear to have a larger spread others

ggplot(flights2, aes(air_time, carrier, fill = carrier)) +
  geom_density_ridges() +
  theme(legend.position = "none")
CHAPTER 13. SOLUTIONS TO EXERCISES

# VX only do long-distance flights, whereas MQ, FL and 9E only do # shorter flights

# Make scatterplots and label outliers with flight numbers
ggplot(flights2, aes(dep_delay, arr_delay, colour = carrier)) +
  geom_point() +
  geom_text(aes(label = ifelse(arr_delay > 300,
                           paste("Flight", flight), "")),
             vjust = 1.2, hjust = 1)
ggplot(flights2, aes(air_time, arr_delay, colour = carrier)) +
  geom_point() +
  geom_text(aes(label = ifelse(air_time > 400 | arr_delay > 300,
                               paste("Flight", flight), "")),
             vjust = 1.2, hjust = 1)

Exercise 4.9

1. To decrease the smoothness of the line, we use the span argument in geom_smooth. The default is geom_smooth(span = 0.75). Decreasing this values yields a very different fit:

   ggpplot(msleep, aes(brainwt, sleep_total)) +
   geom_point() +
   geom_smooth(span = 0.25) +
   xlab("Brain weight (logarithmic scale)") +
   ylab("Total sleep time") +
   scale_x_log10()

   More smoothing is probably preferable in this case. The relationship appears to be fairly weak, and appears to be roughly linear.

2. We can use the method argument in geom_smooth to fit a straight line using lm instead of LOESS:

   ggpplot(msleep, aes(brainwt, sleep_total)) +
   geom_point() +
   geom_smooth(method = "lm") +
   xlab("Brain weight (logarithmic scale)") +
   ylab("Total sleep time") +
   scale_x_log10()

3. To remove the confidence interval from the plot, we set se = FALSE in geom_smooth:
ggplot(msleep, aes(brainwt, sleep_total)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  xlab("Brain weight (logarithmic scale)") +
  ylab("Total sleep time") +
  scale_x_log10()

4. Finally, we can change the colour of the smoothing line using the `colour` argument:

```r
ggplot(msleep, aes(brainwt, sleep_total)) +
 geom_point() +
 geom_smooth(method = "lm", se = FALSE, colour = "red") +
 xlab("Brain weight (logarithmic scale)") +
 ylab("Total sleep time") +
 scale_x_log10()
```

**Exercise 4.10**

1. Adding the `geom_smooth` geom with the default settings produces a trend line that does not capture seasonality:

```r
autoplot(a10) +
 geom_smooth()
```

2. We can change the axes labels using `xlab` and `ylab`:

```r
autoplot(a10) +
 geom_smooth() +
 xlab("Year") +
 ylab("Sales ($ million)")
```

3. `ggtitle` adds a title to the figure:

```r
autoplot(a10) +
 geom_smooth() +
 xlab("Year") +
 ylab("Sales ($ million)") +
 ggtitle("Anti-diabetic drug sales in Australia")
```

4. The `colour` argument can be passed to `autoplot` to change the colour of the time series line:

```r
autoplot(a10, colour = "red") +
 geom_smooth() +
 xlab("Year") +
 ylab("Sales ($ million)") +
```
Exercise 4.11

1. The text can be added by using `annotate(geom = "text", ...)`. In order not to draw the text on top of the circle, you can shift the x-value of the text (the appropriate shift depends on the size of your plot window):

```r
autoplot(gold) +
 annotate(geom = "point", x = spike_date, y = gold[spike_date],
 size = 5, shape = 21, colour = "red",
 fill = "transparent") +
 annotate(geom = "text", x = spike_date - 100,
 y = gold[spike_date],
 label = "Incorrect value!"
)
```

2. We can remove the erroneous value by replacing it with NA in the time series:

```r
gold[spike_date] <- NA
autoplot(gold)
```

3. Finally, we can add a reference line using `geom_hline`:

```r
autoplot(gold) +
 geom_hline(yintercept = 400, colour = "red")
```

Exercise 4.12

1. We can specify which variables to include in the plot as follows:

```r
autoplot(elecdaily[, c("Demand", "Temperature")], facets = TRUE)
```

This produces a terrible-looking label for the y-axis, which we can remove by setting the y-label to NULL:

```r
autoplot(elecdaily[, c("Demand", "Temperature")], facets = TRUE) +
 ylab(NULL)
```

2. As before, we can add smoothers using `geom_smooth`:

```r
autoplot(elecdaily[, c("Demand", "Temperature")], facets = TRUE) +
 geom_smooth() +
 ylab(NULL)
```

Exercise 4.13

1. We set the size of the points using `geom_point(size)`:
2. To add annotations, we use `annotate` and some code to find the days of the lowest and highest temperatures:

```r
Lowest temperature
lowest <- which.min(elecdaily2$Temperature)

Highest temperature
highest <- which.max(elecdaily2$Temperature)

We shift the y-values of the text so that it appears above # the points
ggplot(elecdaily2, aes(Temperature, Demand, colour = day)) +
 geom_point(size = 0.5) +
 geom_path() +
 annotate(geom = "text", x = elecdaily2$Temperature[lowest],
 y = elecdaily2$Demand[lowest] + 4,
 label = elecdaily2$day[lowest]) +
 annotate(geom = "text", x = elecdaily2$Temperature[highest],
 y = elecdaily2$Demand[highest] + 4,
 label = elecdaily2$day[highest])
```

Exercise 4.14

We can specify `aes(group)` for a particular `geom` only as follows:

```r
ggplot(Oxboys, aes(age, height, colour = Subject)) +
 geom_point() +
 geom_line(aes(group = Subject)) +
 geom_smooth(method = "lm", colour = "red", se = FALSE)
```

Subject is now used for grouping the points used to draw the lines (i.e. for `geom_line`), but not for `geom_smooth`, which now uses all the points to create a trend line showing the average height of the boys over time.

Exercise 4.15

Code for producing the three plots is given below:

```r
library(fma)

Time series plot
autoplot(writing) +
```
Exercise 4.16
We use the `cpt.var` functions with the default settings:

```r
library(forecast)
library(fpp2)
library(changepoint)
library(ggfortify)

Plot the time series:
autoplot(elecdaily[, "Demand"])

Plot points where there are changes in the variance:
autoplot(cpt.var(elecdaily[, "Demand"]))
```

The variance is greater in the beginning of the year, and then appears to be more or less constant. Perhaps this can be explained by temperature?

```r
Plot the time series:
autoplot(elecdaily[, "Temperature"])
```

We see that the high-variance period coincides with peaks and large oscillations in temperature, which would cause the energy demand to increase and decrease more than usual, making the variance greater.

Exercise 4.17
By adding a copy of the observation for month 12, with the `Month` value replaced by 0, we can connect the endpoints to form a continuous curve:
Exercise 4.18

As for all ggplot2 plots, we can use ggtitle to add a title to the plot:

```r
ggpairs(diamonds[, which(sapply(diamonds, class) == "numeric")],
 aes(colour = diamonds$cut, alpha = 0.5)) +
 ggtitle("Numeric variables in the diamonds dataset")
```

Exercise 4.19

1. We create the correlogram using ggcorr as follows:

```r
ggcorr(diamonds[, which(sapply(diamonds, class) == "numeric")],
 method = c("pairwise", "spearman"),
 nbreaks = 5)
```

2. method allows us to control which correlation coefficient to use:

```r
ggcorr(diamonds[, which(sapply(diamonds, class) == "numeric")],
 method = c("pairwise", "spearman"))
```

3. nbreaks is used to create a categorical colour scale:

```r
ggcorr(diamonds[, which(sapply(diamonds, class) == "numeric")],
 method = c("pairwise", "spearman"),
 nbreaks = 5)
```

4. low and high can be used to control the colours at the endpoints of the scale:

```r
ggcorr(diamonds[, which(sapply(diamonds, class) == "numeric")],
 method = c("pairwise", "spearman"),
 nbreaks = 5,
 low = "yellow", high = "black")
```

(Yes, the default colours are a better choice!)

Exercise 4.20

1. We replace colour = vore in the aes by fill = vore and add colour = "black", shape = 21 to geom_point. The points now get black borders, which makes them a bit sharper:
CHAPTER 13. SOLUTIONS TO EXERCISES

ggplot(msleep, aes(brainwt, sleep_total, fill = vore, size = bodywt)) +
geom_point(alpha = 0.5, colour = "black", shape = 21) +
xlab("log(Brain weight)") +
ylab("Sleep total (h)") +
scale_x_log10() +
scale_size(range = c(1, 20), trans = "sqrt",
name = "Square root of body weight") +
scale_color_discrete(name = "Feeding behaviour")

2. We can use ggplotly to create an interactive version of the plot. Adding text to the aes allows us to include more information when hovering points:

library(plotly)
myPlot <- ggplot(msleep, aes(brainwt, sleep_total, fill = vore,
size = bodywt, text = name)) +
geom_point(alpha = 0.5, colour = "black", shape = 21) +
xlab("log(Brain weight)") +
ylab("Sleep total (h)") +
scale_x_log10() +
scale_size(range = c(1, 20), trans = "sqrt",
name = "Square root of body weight") +
scale_color_discrete(name = "Feeding behaviour")
ggplotly(myPlot)

Exercise 4.21

1. We create the tile plot using geom_tile. By setting fun = max we obtain the highest price in each bin:

```r
ggplot(diamonds, aes(table, depth, z = price)) +
geom_tile(binwidth = 1, stat = "summary_2d", fun = max) +
ggtitle("Highest prices for diamonds with different depths and tables")
```

2. We can create the bin plot using either geom_bin2d or geom_hex:

```r
ggplot(diamonds, aes(carat, price)) +
geom_bin2d(bins = 50)
```

Diamonds with carat around 0.3 and price around 1000 have the highest bin counts.

Exercise 4.22

1. VS2 and Ideal is the most common combination:
```r
diamonds2 <- aggregate(carat ~ cut + clarity, data = diamonds,
 FUN = length)
names(diamonds2)[3] <- "Count"
ggplot(diamonds2, aes(clarity, cut, fill = Count)) +
 geom_tile()

2. As for continuous variables, we can use `geom_tile` with the arguments `stat = "summary_2d", fun = mean` to display the average prices for different combinations. SI2 and Premium is the combination with the highest average price:

```r
ggplot(diamonds, aes(clarity, cut, z = price)) + 
       geom_tile(binwidth = 1, stat = "summary_2d", fun = mean) + 
       ggtitle("Mean prices for diamonds with different clarities and cuts")
```

Exercise 4.23

1. We create the scatterplot using:

```r
library(gapminder)
library(GGally)

gapminder2007 <- gapminder[gapminder$year == 2007,]

ggpairs(gapminder2007[, c("lifeExp", "pop", "gdpPercap")], 
        aes(colour = gapminder2007$continent, alpha = 0.5), 
        upper = list(continuous = "na"))
```

2. The interactive facetted bubble plot is created using:

```r
library(plotly)

gapminder2007 <- gapminder[gapminder$year == 2007,]

myPlot <- ggplot(gapminder2007, aes(gdpPercap, lifeExp, size = pop, 
                                      colour = country)) + 
          geom_point(alpha = 0.5) + 
          scale_x_log10() + 
          scale_size(range = c(2, 15)) + 
          scale_colour_manual(values = country_colors) + 
          theme(legend.position = "none") + 
          facet_wrap(~ continent)

ggplotly(myPlot)
```

Well done, you just visualised 5 variables in a facetted bubble plot!
Exercise 4.24

1. Fixed wing multi engine Boeings are the most common planes:

```r
library(nycflights13)
library(ggplot2)

planes2 <- aggregate(tailnum ~ type + manufacturer, data = planes,
                      FUN = length)

ggplot(planes2, aes(type, manufacturer, fill = tailnum)) +
geom_tile()  
```

2. The fixed wing multi engine Airbus has the highest average number of seats:

```r
ggplot(planes, aes(type, manufacturer, z = seats)) +
  geom_tile(binwidth = 1, stat = "summary_2d", fun = mean) +
  ggtitle("Number of seats for different planes")
```

3. The number of seats seems to have increased in the 1980’s, and then reached a plateau:

```r
ggplot(planes, aes(year, seats)) +
  geom_point(aes(colour = engine)) +
  geom_smooth()
```

The plane with the largest number of seats is not an Airbus, but a Boeing 747-451. It can be found using `planes[which.max(planes$seats),]` or visually using plotly:

```r
myPlot <- ggplot(planes, aes(year, seats,
                           text = paste("Tail number:", tailnum,
                           "<br>Manufacturer:",
                           manufacturer))) +
  geom_point(aes(colour = engine)) +
  geom_smooth()

ggplotly(myPlot)
```

4. Finally, we can investigate what engines were used during different time periods in several ways, for instance by differentiating engines by colour in our previous plot:

```r
ggplot(planes, aes(year, seats)) +
  geom_point(aes(colour = engine)) +
  geom_smooth()
```
Exercise 4.25

First, we compute the principal components:

```r
library(ggplot2)

# Compute principal components:
pca <- prcomp(diamonds[, which(sapply(diamonds, class) == "numeric")],
              center = TRUE, scale. = TRUE)
```

1. To see the proportion of variance explained by each component, we use `summary`:

```r
summary(pca)
```

The first PC accounts for 65.5% of the total variance. The first two account for 86.9% and the first three account for 98.3% of the total variance, meaning that 3 components are needed to account for at least 90% of the total variance.

2. To see the loadings, we type:

```r
pca
```

The first PC appears to measure size: it is dominated by `carat`, `x`, `y` and `z`, which are size measurements. The second PC appears is dominated by `depth` and `table` and is therefore a summary of those measures.

3. To compute the correlation, we use `cor`:

```r
cor(pca$x[,1], diamonds$price)
```

The (Pearson) correlation is 0.89, which is fairly high. Size is clearly correlated to price!

4. To see if the first two principal components be used to distinguish between diamonds with different cuts, we make a scatterplot:

```r
autoplot(pca, data = diamonds, colour = "cut")
```

The points are mostly gathered in one large cloud. Apart from the fact that very large or very small values of the second PC indicates that a diamond has a Fair cut, the first two principal components seem to offer little information about a diamond’s cut.

Exercise 4.26

We create the scatterplot with the added arguments:

```r
seeds <- read.table("https://tinyurl.com/seedsdata",
                   col.names = c("Area", "Perimeter", "Compactness",
                                  "Kernel_length", "Kernel_width", "Asymmetry"),
```

...
"Groove_length", "Variety")
seeds$Variety <- factor(seeds$Variety)

pca <- prcomp(seeds[, -8], center = TRUE, scale. = TRUE)

library(ggfortify)
autoplot(pca, data = seeds, colour = "Variety",
loadings = TRUE, loadings.label = TRUE)

The arrows for Area, Perimeter, Kernel_length, Kernel_width and Groove_length are all about the same length and are close to parallel the x-axis, which shows that these have similar impact on the first principal component but not the second, making the first component a measure of size. Asymmetry and Compactness both affect the second component, making it a measure of shape. Compactness also affects the first component, but not as much as the size variables do.

Exercise 4.27
We change the hc_method and hc_metric arguments to use complete linkage and the Manhattan distance:

library(cluster)
library(factoextra)
votes.repub %>%
scale() %>%
hcut(k = 5, hc_func = "agnes",
hc_method = "complete",
hc_metric = "manhattan") %>%
fviz_dend()

fviz_dend produces ggplot2 plots. We can save the plots from both approaches and then plot them side-by-side using patchwork as in Section 4.3.4:

votes.repub %>%
scale() %>%
hcut(k = 5, hc_func = "agnes",
hc_method = "average",
hc_metric = "euclidean") %>%
fviz_dend() -> dendro1
votes.repub %>%
scale() %>%
hcut(k = 5, hc_func = "agnes",
hc_method = "complete",
hc_metric = "manhattan") %>%
fviz_dend() -> dendro2

library(patchwork)
dendro1 / dendro2
Alaska and Vermont are clustered together in both cases. The red leftmost cluster is similar but not identical, including Alabama, Georgia and Louisiana.

To compare the two dendrograms in a different way, we can use tanglegram. Setting \(k_{\text{labels}} = 5 \) and \(k_{\text{branches}} = 5 \) gives us 5 coloured clusters:

```r
votes.repub %>% scale() %>%
  hcut(k = 5, hc_func = "agnes",
       hc_method = "average",
       hc_metric = "euclidean") -> clust1

votes.repub %>% scale() %>%
  hcut(k = 5, hc_func = "agnes",
       hc_method = "complete",
       hc_metric = "manhattan") -> clust2
```

library(dendextend)
tanglegram(as.dendrogram(clust1),
 as.dendrogram(clust2),
 k_labels = 5,
 k_branches = 5)

Note that the colours of the lines connecting the two dendrograms are unrelated to the colours of the clusters.

Exercise 4.28

Using the default settings in agnes, we can do the clustering using:

```r
library(cluster)
library(magrittr)
USArrests %>% scale() %>%
  agnes() %>%
  plot(which = 2)
```

Maryland is clustered with New Mexico, Michigan and Arizona, in that order.

Exercise 4.29

We draw a heatmap, with the data standardised in the column direction because we wish to cluster the observations rather than the variables:

```r
library(cluster)
library(magrittr)
USArrests %>% as.matrix() %>% heatmap(scale = "col")
```

You may want to increase the height of your Plot window so that the names of all states are displayed properly.
The heatmap shows that Maryland, and the states similar to it, has higher crime rates than most other states. There are a few other states with high crime rates in other clusters, but those tend to only have a high rate for one crime (e.g. Georgia, which has a very high murder rate), whereas states in the cluster that Maryland is in have high rates for all or almost all types of violent crime.

Exercise 4.30

First, we inspect the data:

```r
library(cluster)
?chorSub

# Scatterplot matrix:
library(GGally)
ggpairs(chorSub)
```

There are a few outliers, so it may be a good idea to use `pam` as it is less affected by outliers than `kmeans`. Next, we draw some plots to help use choose k:

```r
library(factoextra)
library(magrittr)
chorSub %>% scale() %>%
  fviz_nbclust(pam, method = "wss")
chorSub %>% scale() %>%
  fviz_nbclust(pam, method = "silhouette")
chorSub %>% scale() %>%
  fviz_nbclust(pam, method = "gap")
```

There is no pronounced elbow in the WSS plot, although slight changes appear to occur at $k = 3$ and $k = 7$. Judging by the silhouette plot, $k = 3$ may be a good choice, while the gap statistic indicates that $k = 7$ would be preferable. Let’s try both values:

```r
# k = 3:
chorSub %>% scale() %>%
  pam(k = 3) -> kola_cluster
fviz_cluster(kola_cluster, geom = "point")

# k = 7:
chorSub %>% scale() %>%
  pam(k = 7) -> kola_cluster
fviz_cluster(kola_cluster, geom = "point")
```

Neither choice is clearly superior. Remember that clustering is an exploratory procedure, that we use to try to better understand our data.
The plot for $k = 7$ may look a little strange, with two largely overlapping clusters. Bear in mind though, that the clustering algorithm uses all 10 variables and not just the first two principal components, which are what is shown in the plot. The differences between the two clusters isn’t captured by the first two principal components.

Exercise 4.31

First, we try to find a good number of clusters:

```r
library(factoextra)
library(magrittr)
USArrests %>% scale() %>%
  fviz_nbclust(fanny, method = "wss")
USArrests %>% scale() %>%
  fviz_nbclust(fanny, method = "silhouette")
```

We’ll go with $k = 2$ clusters:

```r
library(cluster)
USArrests %>% scale() %>%
  fanny(k = 2) -> USAclusters

# Show memberships:
USAclusters$membership
```

Maryland is mostly associated with the first cluster. Its neighbouring state New Jersey is equally associated with both clusters.

Exercise 4.32

We do the clustering and plot the resulting clusters:

```r
library(cluster)
library(mclust)
kola_cluster <- Mclust(scale(chorSub))
summary(kola_cluster)

# Plot results with ellipsoids:
library(factoextra)
fviz_cluster(kola_cluster, geom = "point", ellipse.type = "norm")
```

Three clusters, that overlap substantially when the first two principal components are plotted, are found.

Exercise 4.33

First, we have a look at the data:
We can imagine several different latent variables that could explain how well the participants performed in these tests: general ability, visual ability, verbal ability, and so on. Let’s use a scree plot to determine how many factors to use:

```r
library(psych)
scree(ability.cov$cov, pc = FALSE)
```

2 or 3 factors seem like a good choice here. Let’s try both:

2-factor model:
```r
ab_fa2 <- fa(ability.cov$cov, nfactors = 2,
             rotate = "oblimin", fm = "ml")
fa.diagram(ab_fa2, simple = FALSE)
```

3-factor model:
```r
ab_fa3 <- fa(ability.cov$cov, nfactors = 3,
             rotate = "oblimin", fm = "ml")
fa.diagram(ab_fa3, simple = FALSE)
```

In the 2-factor model, one factor is primarily associated with the visual variables (which we interpret as the factor describing visual ability), whereas the other primarily is associated with reading and vocabulary (verbal ability). Both are associated with the measure of general intelligence.

In the 3-factor model, there is still a factor associated with reading and vocabulary. There are two factors associated with the visual tests: one with block design and mazes and one with picture completion and general intelligence.

Exercise 4.34

First, we have a look at the data:

```r
library(polca)
?cheating
View(cheating)
```

Next, we perform a latent class analysis with GPA as a covariate:

```r
m <- polca(cbind(LIEXAM, LIEPAPER,
                FRAUD, COPYEXAM) ~ GPA,
                data = cheating, nclass = 2)
```

The two classes roughly correspond to cheaters and non-cheaters. From the table showing the relationship with GPA, we see students with high GPA’s are less likely to be cheaters.
Chapter 5

Exercise 5.1

1. `as.logical` returns `FALSE` for 0 and `TRUE` for all other numbers:

   ```r
   as.logical(0)
   as.logical(1)
   as.logical(14)
   as.logical(-8.889)
   as.logical(pi^2 + exp(18))
   ```

2. When the `as.` functions are applied to vectors, they convert all values in the vector:

   ```r
   as.character(c(1, 2, 3, pi, sqrt(2)))
   ```

3. The `is.` functions return a `logical`: `TRUE` if the variable is of the type and `FALSE` otherwise:

   ```r
   is.numeric(27)
   is.numeric("27")
   is.numeric(TRUE)
   ```

4. The `is.` functions show that `NA` in fact is a (special type of) `logical`. This is also verified by the documentation for `NA`:

   ```r
   is.logical(NA)
   is.numeric(NA)
   is.character(NA)
   ?NA
   ```

Exercise 5.2

We set `file_path` to the path for `vas.csv` and load the data as in Exercise 3.8:

```r
vas <- read.csv(file_path, sep = ";", dec = ",", skip = 4)
```

To split the `VAS` vector by patient ID, we use `split`:

```r
vas_split <- split(vas$VAS, vas$ID)
```

To access the values for patient 212, either of the following works:

```r
vas_split$'212`
vas_split[[12]]
```
Exercise 5.3

1. To convert the proportions to percentages with one decimal place, we must first multiply them by 100 and then round them:

\[\text{props <- c(0.1010, 0.2546, 0.6009, 0.0400, 0.0035)} \]
\[\text{round(100 * props, 1)} \]

2. The cumulative maxima and minima are computed using `cummax` and `cummin`:

\[\text{cummax(airquality$Temp)} \]
\[\text{cummin(airquality$Temp)} \]

The minimum during the period occurs on the 5th day, whereas the maximum occurs during day 120.

3. To find runs of days with temperatures above 80, we use `rle`:

\[\text{runs <- rle(airquality$Temp > 80)} \]

To find runs with temperatures above 80, we extract the length of the runs for which `runs$values` is TRUE:

\[\text{runs$lengths[runs$values == TRUE]} \]

We see that the longest run was 23 days.

Exercise 5.4

1. On virtually all systems, the largest number that R can represent as a floating point is \(1.797693e+308\). You can find this by gradually trying larger and larger numbers:

\[\text{1e+100} \]
\[\ldots \]
\[\text{1e+308} \]
\[\text{1e+309} \quad \text{# The largest number must be between 1e+308 and 1e+309!} \]
\[\ldots \]
\[\text{1.797693e+308} \]
\[\text{1.797694e+308} \]

2. If we place the \(^2\) inside `sqrt` the result becomes 0:

\[\text{sqrt(2)^2 - 2} \quad \text{# Not 0} \]
\[\text{sqrt(2^2) - 2} \quad \text{# 0} \]

Exercise 5.5

We re-use the solution from Exercise 3.7:
airquality$TempCat <- cut(airquality$Temp,
 breaks = c(50, 70, 90, 110))

1. Next, we change the levels’ names:
levels(airquality$TempCat) <- c("Mild", "Moderate", "Hot")

2. Finally, we combine the last two levels:
levels(airquality$TempCat)[2:3] <- "Hot"

Exercise 5.6

1 We start by converting the vore variable to a factor:
library(ggplot2)
str(msleep) # vore is a character vector!

msleep$vore <- factor(msleep$vore)
levels(msleep$vore)

The levels are ordered alphabetically, which is the default in R.

2. To compute grouped means, we use aggregate:
means <- aggregate(sleep_total ~ vore, data = msleep, FUN = mean)

3. Finally, we sort the factor levels according to their sleep_total means:
Check order:
means
New order: herbi, carni, omni, insecti.

We could set the new order manually:
msleep$vore <- factor(msleep$vore,
 levels = c("herbi", "carni", "omni", "insecti"))

Alternatively, rank and match can be used to get the new order of
the levels:
?rank
?match
ranks <- rank(means$sleep_total)
new_order <- match(1:4, ranks)

msleep$vore <- factor(msleep$vore,
 levels = levels(msleep$vore)[new_order])
CHAPTER 13. SOLUTIONS TO EXERCISES

Exercise 5.7
First, we set file_path to the path to handkerchiefs.csv and import it to the data frame pricelist:

```r
pricelist <- read.csv(file_path)
```

1. `nchar` counts the number of characters in strings:

```r
?nchar
nchar(pricelist$Italian.handkerchiefs)
```

2. We can use `grep` and a regular expression to see that there are 2 rows of the Italian.handkerchief column that contain numbers:

```r
grep("[[:digit:]]", pricelist$Italian.handkerchiefs)
```

3. To extract the prices in shillings (S) and pence (D) from the Price column and store these in two new numeric variables in our data frame, we use `strsplit`, `unlist` and `matrix` as follows:

```r
# Split strings at the space between the numbers and the letters:
Price_split <- strsplit(pricelist$Price, " ")
Price_split <- unlist(Price_split)
Price_matrix <- matrix(Price_split, nrow = length(Price_split)/4, ncol = 4, byrow = TRUE)

# Add to the data frame:
pricelist$PriceS <- as.numeric(Price_matrix[,1])
pricelist$PriceD <- as.numeric(Price_matrix[,3])
```

Exercise 5.8
We set file_path to the path to Oslo-biomarkers.xlsx and load the data:

```r
library(openxlsx)

oslo <- as.data.table(read.xlsx(file_path))
```

To find out how many patients were included in the study, we use `strsplit` to split the ID-timepoint string, and then `unique`:

```r
oslo_id <- unlist(strsplit(oslo"PatientID.timepoint", ","))

oslo_id_matrix <- matrix(oslo_id, nrow = length(oslo_id)/2, ncol = 2, byrow = TRUE)

unique(oslo_id_matrix[,1])
```
We see that 118 patients were included in the study.

Exercise 5.9

1. "$g" matches strings ending with g:
   ```r
contacts$Address[grep("$g", contacts$Address)]
   ```

2. "~[[:digit:]]" matches strings beginning with anything but a digit:
   ```r
contacts$Address[grep("~[[:digit:]]", contacts$Address)]
   ```

3. "a(s|l)" matches strings containing either as or al:
   ```r
contacts$Address[grep("a(s|l)", contacts$Address)]
   ```

4. "[[:lower:]]+\.[[:lower:]]+" matches strings containing any number of lowercase letters, followed by a period ., followed by any number of lowercase letters:
   ```r
contacts$Address[grep("[[:lower:]]+\.[[:lower:]]+", contacts$Address)]
   ```

Exercise 5.10

We want to extract all words, i.e. segments of characters separated by white spaces. First, let’s create the string containing example sentences:
```
x <- "This is an example of a sentence, with 10 words. Here are 4 more!"
```
Next, we split the string at the spaces:
```
x_split <- strsplit(x, " ")
```
Note that `x_split` is a list. To turn this into a vector, we use `unlist`:
```
x_split <- unlist(x_split)
```
Finally, we can use `gsub` to remove the punctuation marks, so that only the words remain:
```
gsub("[[:punct:]]", "", x_split)
```
If you like, you can put all steps on a single row:
```
gsub("[[:punct:]]", "", unlist(strsplit(x, " ")))```
...or reverse the order of the operations:
Exercise 5.11

1. The functions are used to extract the weekday, month and quarter for each date:

   ```r
 weekdays(dates)
 months(dates)
 quarters(dates)
   ```

2. `julian` can be used to compute the number of days from a specific date (e.g. 1970-01-01) to each date in the vector:

   ```r
 julian(dates, origin = as.Date("1970-01-01", format = "%Y-%m-%d"))
   ```

Exercise 5.12

1. On most systems, converting the three variables to Date objects using `as.Date` yields correct dates without times:

   ```r
 as.Date(c(time1, time2, time3))
   ```

2. We convert `time1` to a Date object and add 1 to it:

   ```r
 as.Date(time1) + 1
   ```

   The result is 2020-04-02, i.e. adding 1 to the Date object has added 1 day to it.

3. We convert `time3` and `time1` to Date objects and subtract them:

   ```r
 as.Date(time3) - as.Date(time1)
   ```

   The result is a difftime object, printed as Time difference of 2 days. Note that the times are ignored, just as before.

4. We convert `time2` and `time1` to Date objects and subtract them:

   ```r
 as.Date(time2) - as.Date(time1)
   ```

   The result is printed as Time difference of 0 days, because the difference in time is ignored.

5. We convert the three variables to POSIXct date and time objects using `as.POSIXct` without specifying the date format:

   ```r
 as.POSIXct(c(time1, time2, time3))
   ```

   On most systems, this yields correctly displayed dates and times.

6. We convert `time3` and `time1` to POSIXct objects and subtract them:
This time out, time is included when the difference is computed, and the output is Time difference of 2.234722 days.

7. We convert time2 and time1 to POSIXct objects and subtract them:
```r
as.POSIXct(time2) - as.POSIXct(time1)
```
In this case, the difference is presented in hours: Time difference of 1.166667 hours. In the next step, we take control over the units shown in the output.

8. `difftime` can be used to control what units are used for expressing differences between two timepoints:
```r
difftime(as.POSIXct(time3), as.POSIXct(time1), units = "hours")
```
The output is Time difference of 53.63333 hours.

**Exercise 5.13**

1. Using the first option, the Date becomes the first day of the quarter. Using the second option, it becomes the last day of the quarter instead. Both can be useful for presentation purposes - which you prefer is a matter of taste.

2. To convert the quarter-observations to the first day of their respective quarters, we use `as.yearqtr` as follows:
```r
library(zoo)
```
```r
as.Date(as.yearqtr(qvec2, format = "Q%q/%y"))
as.Date(as.yearqtr(qvec3, format = "Q%q-%Y"))
```
%q, %y, and %Y are date tokens. The other letters and symbols in the format argument simply describe other characters included in the format.

**Exercise 5.14**

The x-axis of the data can be changed in multiple ways. A simple approach is the following:
```r
Create a new data frame with the correct dates and the demand data:
dates <- seq.Date(as.Date("2014-01-01"), as.Date("2014-12-31"), by = "day")
elecday2 <- data.frame(dates = dates, demand = elecdaily[,1])
ggplot(elecday2, aes(dates, demand)) + geom_line()
```
A more elegant approach relies on the xts package for time series:
library(xts)
## Convert time series to an xts object:
dates <- seq.Date(as.Date("2014-01-01"), as.Date("2014-12-31"),
by = "day")
elecdaily3 <- xts(elecdaily, order.by = dates)
autoplot(elecdaily3[, "Demand"])

Exercise 5.15

## First, create a data frame with better formatted dates
a102 <- as.data.frame(a10)
a102$Date <- seq.Date(as.Date("1991-07-01"), as.Date("2008-06-01"),
by = "month")

## Create the plot object
myPlot <- ggplot(a102, aes(Date, x)) +
  geom_line() +
  xlab("Sales")

## Create the interactive plot
ggplotly(myPlot)

Exercise 5.16

We set file_path to the path for vas.csv and read the data as in Exercise 3.8 and convert it to a data.table (the last step being optional if we’re only using dplyr for this exercise):

```r
vas <- read.csv(file_path, sep = ";", dec = ",", skip = 4)
vas <- as.data.table(vas)
```

A better option is to achieve the same result in a single line by using the fread function from data.table:

```r
vas <- fread(file_path, sep = ";", dec = ",", skip = 4)
```

1. First, we remove the columns X and X.1:

   With data.table:
   ```r
 vas[, c("X", "X.1") := NULL]
   ```

   With dplyr:
   ```r
 vas %>% select(-X, -X.1) -> vas
   ```

2. Second, we add a dummy variable called highVAS that indicates whether a patient’s VAS is 7 or greater on any given day:
With `data.table`:

```r
vas[, highVAS := VAS >= 7]
```

With `dplyr`:

```r
vas %>% mutate(highVAS = VAS >= 7) -> vas
```

**Exercise 5.17**

We re-use the solution from Exercise 3.7:

```r
airquality$TempCat <- cut(airquality$Temp,
 breaks = c(50, 70, 90, 110))

aq <- data.table(airquality)
```

1. Next, we change the levels’ names:

With `data.table`:

```r
new_names = c("Mild", "Moderate", "Hot")
aq[, (TempCat = levels(TempCat),
 to = new_names),
 on = "TempCat",
 TempCat := i.to]
aq[, TempCat := droplevels(TempCat)]
```

With `dplyr`:

```r
aq %>% mutate(TempCat = recode(TempCat,

 "(50,70]" = "Mild",
 "(70,90]" = "Moderate",
 "(90,110]\" = "Hot") -> aq
```

2. Finally, we combine the last two levels:

With `data.table`:

```r
aq[, (TempCat = c("Moderate", "Hot"),
 to = "Hot"),
 on = "TempCat", TempCat := i.to]
aq[, TempCat := droplevels(TempCat)]
```

With `dplyr`:

```r
aq %>% mutate(TempCat = recode(TempCat,
 "Moderate" = "Hot")
```

**Exercise 5.18**

We set `file_path` to the path for `vas.csv` and read the data as in Exercise 3.8 using `fread` to import it as a `data.table`:

```r
vas <- fread(file_path, sep = ";", dec = ",", skip = 4)
```

1. First, we compute the mean VAS for each patient:

With `data.table`:

```r
with(vas, mean(VAS))
```
CHAPTER 13. SOLUTIONS TO EXERCISES

With **data.table**:

```r
vas[, mean(VAS, na.rm = TRUE), ID]
```

With **dplyr**:

```r
vas %>% group_by(ID) %>% summarize(meanVAS = mean(VAS, na.rm = TRUE))
```

2. Next, we compute the lowest and highest VAS recorded for each patient:

With **data.table**:

```r
vas[, .(min = min(VAS, na.rm = TRUE),
 max = max(VAS, na.rm = TRUE),
 ID)]
```

With **dplyr**:

```r
vas %>% group_by(ID) %>% summarize(min = min(VAS, na.rm = TRUE),
 max = max(VAS, na.rm = TRUE))
```

3. Finally, we compute the number of high-VAS days for each patient. We can compute the sum directly:

With **data.table**:

```r
vas[, sum(VAS >= 7, na.rm = TRUE), ID]
```

With **dplyr**:

```r
vas %>% group_by(ID) %>% summarize(highVASdays = sum(VAS >= 7, na.rm = TRUE))
```

Alternatively, we can do this by first creating a dummy variable for high-VAS days:

With **data.table**:

```r
vas[, highVAS := VAS >= 7]
vas[, sum(highVAS, na.rm = TRUE), ID]
```

With **dplyr**:

```r
vas %>% mutate(highVAS = VAS >= 7) -> vas
vas %>% group_by(ID) %>% summarize(highVASdays = sum(highVAS, na.rm = TRUE))
```

**Exercise 5.19**

First we load the data and convert it to a **data.table** (the last step being optional if we’re only using **dplyr** for this exercise):

```r
library(datasauRus)
dd <- as.data.table(datasaurus_dozen)
```

1. Next, we compute summary statistics grouped by **dataset**:
With data.table:

```r
dd[, .(mean_x = mean(x),
 mean_y = mean(y),
 sd_x = sd(x),
 sd_y = sd(y),
 cor = cor(x,y)),
 dataset]
```

With dplyr:

```r
dd %>% group_by(dataset) %>%
 summarise(mean_x = mean(x),
 mean_y = mean(y),
 sd_x = sd(x),
 sd_y = sd(y),
 cor = cor(x,y))
```

The summary statistics for all datasets are virtually identical.

2. Next, we make scatterplots. Here is a solution using `ggplot2`:

```r
library(ggplot2)
library(dplyr)
library(data.table)
vg <- fread(file_path)

ggplot(datasaurus_dozen, aes(x, y, colour = dataset)) +
 geom_point() +
 facet_wrap(~ dataset, ncol = 3)
```

Clearly, the datasets are very different! This is a great example of how simply computing summary statistics is not enough. They tell a part of the story, yes, but only a part.

**Exercise 5.20**

We set `file_path` to the path for `vas.csv` and read the data as in Exercise 3.8 using `fread` to import it as a `data.table`:

```r
library(data.table)
vas <- fread(file_path, sep = ";", dec = ",", skip = 4)
```

To fill in the missing values, we can now do as follows:

With data.table:

```r
vas[, Visit := nafill(Visit, "locf")]
```

With tidyr:

```r
vas %>% fill(Visit)
```

**Exercise 5.21**

We set `file_path` to the path to `ucdp-onesided-191.csv` and load the data as a `data.table` using `fread`:

```r
library(dplyr)
library(data.table)
ucdp <- fread(file_path)
```
1. First, we filter the rows so that only conflicts that took place in Colombia are retained.

With data.table:

\[
\text{colombia <- ucdp[location == "Colombia",]}
\]

With dplyr:

\[
\text{ucdp %>% filter(location == "Colombia") -> colombia}
\]

To list the number of different actors responsible for attacks, we can use \texttt{unique}:

\[
\text{unique(colombia$actor_name)}
\]

We see that there were attacks by 7 different actors during the period.

2. To find the number of fatalities caused by government attacks on civilians, we first filter the data to only retain rows where the actor name contains the word \textit{government}:

With data.table:

\[
\text{gov <- ucdp[actor_name %like% "[gG]overnment",]}
\]

With dplyr:

\[
\text{ucdp %>% filter(grepl("[gG]overnment", actor_name)) -> gov}
\]

It may be of interest to list the governments involved in attacks on civilians:

\[
\text{unique(gov$actor_name)}
\]

To estimate the number of fatalities caused by these attacks, we sum the fatalities from each attack:

\[
\text{sum(gov$best_fatality_estimate)}
\]

\textbf{Exercise 5.22}

We set \texttt{file_path} to the path to \texttt{oslo-biomarkers.xlsx} and load the data:

\[
\text{library(dplyr)}
\]
\[
\text{library(data.table)}
\]
\[
\text{library(openxlsx)}
\]

\[
\text{oslo <- as.data.table(read.xlsx(file_path))}
\]

1. First, we select only the measurements from blood samples taken at 12 months. These are the only observations where the \texttt{PatientID.timepoint} column contains the word \textit{months}:
With `data.table`:

\[
\text{oslo[PatientID.timepoint \%like\ "months",]}
\]

With `dplyr`:

\[
\text{oslo \%>\% filter(grepl("months", PatientID.timepoint))}
\]

2. Second, we select only the measurements from the patient with ID number 6. Note that we cannot simply search for strings containing a 6, as we then also would find measurements from other patients taken at 6 weeks, as well as patients with a 6 in their ID number, e.g. patient 126. Instead, we search for strings beginning with 6-:

With `data.table`:

\[
\text{oslo[PatientID.timepoint \%like\ ^6[-],]}
\]

With `dplyr`:

\[
\text{oslo \%>\% filter(grepl("^6[-]", PatientID.timepoint))}
\]

**Exercise 5.23**

We set `file_path` to the path to `ucdp-onesided-191.csv` and load the data as a `data.table` using `fread`:

```
library(dplyr)
library(data.table)
ucdp <- fread(file_path)
```

Next, we select the `actor_name`, `year`, `best_fatality_estimate` and `location` columns:

With `data.table`:

\[
\text{ucdp[, .(actor_name, year, best_fatality_estimate, location)]}
\]

With `dplyr`:

\[
\text{ucdp \%>\% select(actor_name, year, best_fatality_estimate, location)}
\]

**Exercise 5.24**

We set `file_path` to the path to `oslo-biomarkers.xlsx` and load the data:

```
library(dplyr)
library(data.table)
library(openxlsx)
oslo <- as.data.table(read.xlsx(file_path))
```

We then order the data by the `PatientID.timepoint` column:
With **data.table**:

```r
oslo[order(PatientID.timepoint),]
```

With **dplyr**:

```r
oslo %>% arrange(PatientID.timepoint)
```

Note that because `PatientID.timepoint` is a *character* column, the rows are now ordered in *alphabetical* order, meaning that patient 1 is followed by 100, 101, 102, and so on. To order the patients in *numerical* order, we must first split the ID and timepoints into two different columns. We’ll see how to do that in the next section, and try it out on the `oslo` data in Exercise 5.25.

**Exercise 5.25**

We set `file_path` to the path to `oslo-biomarkers.xlsx` and load the data:

```r
library(dplyr)
library(tidyr)
library(data.table)
library(openxlsx)

oslo <- as.data.table(read.xlsx(file_path))
```

1. First, we split the `PatientID.timepoint` column:

   **With data.table:**
   ```r
 oslo[, c("PatientID", "timepoint") := tstrsplit(PatientID.timepoint, "-", fixed = TRUE)]
   ```

   **With tidyr:**
   ```r
 oslo %>% separate(PatientID.timepoint, into = c("PatientID", "timepoint"), sep = "-") -> oslo
   ```

2. Next, we reformat the patient ID to a *numeric* and sort the table:

   **With data.table:**
   ```r
 oslo[, PatientID := as.numeric(PatientID)]
 oslo[order(PatientID),]
   ```

   **With dplyr:**
   ```r
 oslo %>% mutate(PatientID = as.numeric(PatientID)) %>% arrange(PatientID)
   ```

3. Finally, we reformat the data from long to wide, keeping the IL-8 and VEGF-A measurements. We store it as `oslo2`, knowing that we’ll need it again in Exercise 5.26.
With data.table:

```r
oslo2 <- dcast(oslo,
 PatientID ~ timepoint,
 value.var = c("IL-8", "VEGF-A"))
```

With tidyr:

```r
oslo %>% pivot_wider(id_cols = PatientID,
 names_from = timepoint,
 values_from = c("IL-8", "VEGF-A"),
) -> oslo2
```

**Exercise 5.26**

We use the oslo2 data frame that we created in Exercise 5.26. In addition, we set `file_path` to the path to `oslo-covariates.xlsx` and load the data:

```r
library(dplyr)
library(data.table)
library(openxlsx)

covar <- as.data.table(read.xlsx(file_path))
```

1. First, we merge the wide data frame from Exercise 5.25 with the `oslo-covariates.xlsx` data, using patient ID as key. A left join, where we only keep data for patients with biomarker measurements, seems appropriate here. We see that both datasets have a column named `PatientID`, which we can use as our key.

With data.table:

```r
merge(oslo2, covar,
 all.x = TRUE,
 by = "PatientID")
```

With dplyr:

```r
oslo2 %>% left_join(covar,
 by = "PatientID")
```

2. Next, we use the `oslo-covariates.xlsx` data to select data for smokers from the wide data frame using a semijoin. The `Smoker.(1=yes,.2=no)` column contains information about smoking habits. First we create a table for filtering:

With data.table:

```r
filter_data <-
covar[`Smoker.(1=yes,.2=no)` == 1,]
```

With dplyr:

```r
covar %>%
 filter(`Smoker.(1=yes,.2=no)` == 1) -> filter_data
```

Next, we perform the semijoin:
With `data.table`:

```r
setkey(oslo2, PatientID)
oslo2[oslo2[filter_data, which = TRUE]]
```

With `dplyr`:

```r
oslo2 %>% semi_join(filter_data, by = "PatientID")
```

**Exercise 5.27**

We read the HTML file and extract the table:

```r
library(rvest)
keytars <- html_table(html_nodes(wiki, "table")[1], fill = TRUE)
```

We note that some non-numeric characters cause `Dates` to be a `character` vector:

```r
str(keytars)
keytars$Dates
```

Noting that the first four characters in each element of the vector contain the year, we can use `substr` to only keep those characters. Finally, we use `as.numeric` to convert the text to numbers:

```r
keytars$Dates <- substr(keytars$Dates, 1, 4)
keytars$Dates <- as.numeric(keytars$Dates)
keytars$Dates
```

**Chapter 6**

**Exercise 6.1**

The formula for converting a temperature $F$ measured in Fahrenheit to a temperature $C$ measured in Celsius is $C = (F - 32) \times \frac{5}{9}$. Our function becomes:

```r
FtoC <- function(F)
{
 C <- (F-32) * 5/9
 return(C)
}
```

To apply it to the `Temp` column of `airquality`:

```r
FtoC(airquality$Temp)
```
Exercise 6.2

1. We want a function to take a vector as input and return a vector containing its minimum and the maximum, without using \texttt{min} and \texttt{max}:

```r
minmax <- function(x)
{
 # Sort x so that the minimum becomes the first element
 # and the maximum becomes the last element:
 sorted_x <- sort(x)
 min_x <- sorted_x[1]
 max_x <- sorted_x[length(sorted_x)]
 return(c(min_x, max_x))
}
```

# Check that it works:
x <- c(3, 8, 1, 4, 5)
minmax(x) # Should be 1 and 8

2. We want a function that computes the mean of the squared values of a vector using \texttt{mean}, and that takes additional arguments that it passes on to \texttt{mean} (e.g. \texttt{na.rm}):

```r
mean2 <- function(x, ...)
{
 return(mean(x^2, ...))
}
```

# Check that it works:
x <- c(3, 2, 1)
mean2(x) # Should be 14/3=4.666...

# With NA:
x <- c(3, 2, NA)
mean2(x) # Should be NA
mean2(x, na.rm = TRUE) # Should be 13/2=6.5

Exercise 6.3

We use \texttt{cat} to print a message about missing values, \texttt{sum(is.na(.))} to compute the number of missing values, \texttt{na.omit} to remove rows with missing data and then \texttt{summary} to print the summary:

```r
na_remove <- . %>% %>% \{cat("Missing values:", sum(is.na(.)), "\n") %>%
na.omit %>% summary
```
Exercise 6.4

The following operator allows us to plot y against x:

```r
`%against%` <- function(y, x) { plot(x, y) }
```

Let’s try it out:

```r
airquality$Wind %against% airquality$Temp
```

Or, if we want to use ggplot2 instead of base graphics:

```r
library(ggplot2)
`%against%` <- function(y, x) {
 df <- data.frame(x, y)
 ggplot(df, aes(x, y)) +
 geom_point()
}

airquality$Wind %against% airquality$Temp
```

Exercise 6.5

1. FALSE: x is not greater than 2.
2. TRUE: | means that at least one of the conditions need to be satisfied, and x is greater than z.
3. FALSE: & means that both conditions must be satisfied, and x is not greater than y.
4. TRUE: the absolute value of x*z is 6, which is greater than y.

Exercise 6.6

There are two errors: the variable name in `exists` is not between quotes and `x > 0` evaluates to a vector an not a single value. The goal is to check that all values in x are positive, so `all` can be used to collapse the `logical` vector `x > 0`:

```r
x <- c(1, 2, pi, 8)

Only compute square roots if x exists
and contains positive values:
if(exists("x")) { if(all(x > 0)) { sqrt(x) } }
```

Alternatively, we can get a better looking solution by using `&&`:

```r
x <- c(1, 2, pi, 8)

if(exists("x") & all(x > 0)) {
 sqrt(x)
}
```
if(exists("x") && all(x > 0)) { sqrt(x) }

Exercise 6.7

1. To compute the mean temperature for each month in the airquality dataset using a loop, we loop over the 6 months:

```r
months <- unique(airquality$Month)
meanTemp <- vector("numeric", length(months))
for(i in seq_along(months))
{
 # Extract data for month[i]:
aq <- airquality[airquality$Month == months[i],]
 # Compute mean temperature:
 meanTemp[i] <- mean(aq$Temp)
}
```

2. Next, we use a for loop to compute the maximum and minimum value of each column of the airquality data frame, storing the results in a data frame:

```r
results <- data.frame(min = vector("numeric", ncol(airquality)),
 max = vector("numeric", ncol(airquality)))
for(i in seq_along(airquality))
{
 results$min[i] <- min(airquality[,i], na.rm = TRUE)
 results$max[i] <- max(airquality[,i], na.rm = TRUE)
}
results
```

# For presentation purposes, we can add the variable names as row names:
row.names(results) <- names(airquality)

3. Finally, we write a function to solve task 2 for any data frame:

```r
minmax <- function(df, ...) {
 results <- data.frame(min = vector("numeric", ncol(df)),
 max = vector("numeric", ncol(df))
 for(i in seq_along(df))
 {
 results$min[i] <- min(df[,i], ...)
 results$max[i] <- max(df[,i], ...)
 }
 results
}
```
We can create \(0.25, 0.5, 0.75, 1\) in two different ways using `seq`:

```r
seq(0.25, 1, length.out = 4)
seq(0.25, 1, by = 0.25)
```

2. We can create \(1, 1, 1, 2, 2, 5\) using `rep`. \(1\) is repeated 3 times, \(2\) is repeated 2 times and \(5\) is repeated a single time:

```r
rep(c(1, 2, 5), c(3, 2, 1))
```

### Exercise 6.9

We could create the same sequences using `1:ncol(airquality)` and `1:length(airquality$Temp)`, but if we accidentally apply those solutions to objects with zero length, we would run into trouble! Let’s see what happens:

```r
x <- c()
length(x)
```

Even though there are no elements in the vector, two iterations are run when we use `1:length(x)` to set the values of the control variable:

```r
for(i in 1:length(x)) { cat("Element", i, "of the vector\n") }
```

The reason is that `1:length(x)` yields the vector \(0, 1\), providing two values for the control variable.

If we use `seq_along` instead, no iterations will be run, because `seq_along(x)` returns zero values:

```r
for(i in seq_along(x)) { cat("Element", i, "of the vector\n") }
```
This is the desired behaviour - if there are no elements in the vector then the loop shouldn’t run! `seq_along` is the safer option, but `1:length(x)` is arguably less opaque and therefore easier for humans to read, which also has its benefits.

**Exercise 6.10**

To normalise the variable, we need to map the smallest value to 0 and the largest to 1:

```r
normalise <- function(df, ...) {
 for(i in seq_along(df)) {
 df[,i] <- (df[,i] - min(df[,i], ...))/(max(df[,i], ...)) - min(df[,i], ...))
 }
 return(df)
}

aqn <- normalise(airquality, na.rm = TRUE)
summary(aqn)
```

**Exercise 6.11**

We set `folder_path` to the path of the folder (making sure that the path ends with `/` (or `\` on Windows)). We can then loop over the `.csv` files in the folder and print the names of their variables as follows:

```r
files <- list.files(folder_path, pattern = "\.csv$")

for(file in files) {
 csv_data <- read.csv(paste(folder_path, file, sep = ""))
 cat(file, "\n")
 cat(names(csv_data))
 cat("\n\n")
}
```

**Exercise 6.12**

1. The condition in the outer loop, `i < length(x)`, is used to check that the element `x[i+1]` used in the inner loop actually exists. If `i` is equal to the length of the vector (i.e. is the last element of the vector) then there is no element `x[i+1]` and consequently the run cannot go on. If this condition wasn’t included, we would end up with an infinite loop.
2. The condition in the inner loop, \( x[i+1] == x[i] \) & \( i < \text{length}(x) \), is used to check if the run continues. If \( i+1 \) == \( x[i] \) is TRUE then the next element of \( x \) is the same as the current, meaning that the run continues. As in the previous condition, \( i < \text{length}(x) \) is included to make sure that we don’t start looking for elements outside of \( x \), which could create an infinite loop.

3. The line `run_values <- c(run_values, x[i-1])` creates a vector combining the existing elements of `run_values` with \( x[i-1] \). This allows us to store the results in a vector without specifying its size in advance. Not however that this approach is slower than specifying the vector size in advance, and that you therefore should avoid it when using `for` loops.

**Exercise 6.13**

We modify the loop so that it skips to the next iteration if \( x[i] \) is 0, and breaks if \( x[i] \) is NA:

```
x <- c(1, 5, 8, 0, 20, 0, 3, NA, 18, 2)
for(i in seq_along(x))
{
 if(is.na(x[i])) { break }
 if(x[i] == 0) { next }
 cat("Step", i, "- reciprocal is", 1/x[i], "\n")
}
```

**Exercise 6.13**

We can put a conditional statement inside each of the loops, to check that both variables are numeric:

```
cor_func <- function(df)
{
 cor_mat <- matrix(NA, nrow = ncol(df), ncol = ncol(df))
 for(i in seq_along(df))
 {
 if(!is.numeric(df[[i]])) { next }
 for(j in seq_along(df))
 {
 if(!is.numeric(df[[j]])) { next }
 cor_mat[i, j] <- cor(df[[i]], df[[j]],
 use = "pairwise.complete")
 }
 }
 return(cor_mat)
}
```
# Check that it works:
str(ggplot2::msleep)
cor_func(ggplot2::msleep)

An (nicer?) alternative would be to check which columns are `numeric` and loop over those:

cor_func <- function(df) {
  cor_mat <- matrix(NA, nrow = ncol(df), ncol = ncol(df))
  indices <- which(sapply(df, class) == "numeric")
  for(i in indices) {
    for(j in indices) {
      cor_mat[i, j] <- cor(df[[i]], df[[j]],
          use = "pairwise.complete")
    }
  }
  return(cor_mat)
}

# Check that it works:
cor_func(ggplot2::msleep)

**Exercise 6.15**

To compute the minima, we can use:

```r
apply(airquality, 2, min, na.rm = TRUE)
```

To compute the maxima, we can use:

```r
apply(airquality, 2, max, na.rm = TRUE)
```

We could also write a function that computes both the minimum and the maximum and returns both, and use that with `apply`:

```r
minmax <- function(x, ...) {
 return(c(min = min(x, ...), max = max(x, ...)))
}
apply(airquality, 2, minmax, na.rm = TRUE)
```
Exercise 6.16
We can for instance make use of the `minmax` function that we created in Exercise 6.15:

```r
define function minmax(x, ...) {
 return(c(min = min(x, ...), max = max(x, ...)))
}
```

```r
temps <- split(airquality$Temp, airquality$Month)
sapply(temps, minmax) # or lapply/vapply
Or:
tapply(airquality$Temp, airquality$Month, minmax)
```

Exercise 6.17
To compute minima and maxima, we can use:

```r
define function minmax(x, ...) {
 return(c(min = min(x, ...), max = max(x, ...)))
}
```

This time out, we want to apply this function to two variables: `Temp` and `Wind`. We can do this using `apply`:

```r
minmax2 <- function(x, ...)
{
 return(apply(x, 2, minmax))
}
```

```r
tw <- split(airquality[,c("Temp", "Wind")], airquality$Month)
lapply(tw, minmax2)
```

If we use `sapply` instead, we lose information about which statistic correspond to which variable, so `lapply` is a better choice here:

```r
sapply(tw, minmax2)
```

Exercise 6.18
We can for instance make use of the `minmax` function that we created in Exercise 6.15:
\[
\text{minmax} \leftarrow \text{function}(x, \ldots) \\
\{ \\
\quad \text{return}(c(\text{min} = \text{min}(x, \ldots), \text{max} = \text{max}(x, \ldots))) \\
\} \\
\]

library(purrr)

temps \leftarrow \text{split}(\text{airquality}\$\text{Temp}, \text{airquality}\$\text{Month})
temps \%\%\% \text{map}(\text{minmax})

We can also use a single pipe chain to split the data and apply the functional:
\[
\text{airquality} \%\%\% \text{split}(\ .$\text{Month}) \%\%\% \text{map}(-\text{minmax}(\ .$\text{Temp}))
\]

**Exercise 6.19**

Because we want to use both the variable names and their values, an \texttt{imap_*} function is appropriate here:

\[
\text{data_summary} \leftarrow \text{function}(df) \\
\{ \\
\quad df \%\% \text{imap}_dfr((-\text{data.frame}(\text{variable} = .y, \\
\quad \quad \text{unique_values} = \text{length}(\text{unique}(x)), \\
\quad \quad \text{class} = \text{class}(x), \\
\quad \quad \text{missing_values} = \text{sum}(\text{is.na}(x)))) \\
\}
\]

# Check that it works:
library(ggplot2)
data_summary(msleep)

**Exercise 6.20**

We combine \texttt{map} and \texttt{imap} to get the desired result. \texttt{folder_path} is the path to the folder containing the .csv files. We must use \texttt{set_names} to set the file names as element names, otherwise only the index of each file (in the file name vector) will be printed:

\[
\text{list.files}(\text{folder_path, pattern = "\csv"}) \%\% \\
\quad \text{paste}(\text{folder_path, ., sep = ""}) \%\% \\
\quad \text{set_names}() \%\% \\
\quad \text{map}(\text{read.csv}) \%\% \\
\quad \text{imap}(-\text{cat}(.y, "\n", \text{names}(x), \"\n\\n"))
\]
Exercise 6.21
First, we load the data and create vectors containing all combinations

```
library(gapminder)
combos <- gapminder %>% distinct(continent, year)
continents <- combos$continent
years <- combos$year
```

Next, we create the scatterplots:

```
Create a plot for each pair:
combos_plots <- map2(continents, years, ~{
 gapminder %>% filter(continent == .x, year == .y) %>%
 ggplot(aes(pop, lifeExp)) + geom_point() +
 ggtitle(paste(.x, .y, sep = " in "))
})
```

If instead we just want to save each scatterplot in a separate file, we can do so by putting `ggsave` (or `png + dev.off`) inside a `walk2` call:

```
Create a plot for each pair:
combos_plots <- walk2(continents, years, ~{
 gapminder %>% filter(continent == .x, year == .y) %>%
 ggplot(aes(pop, lifeExp)) + geom_point() +
 ggtitle(paste(.x, .y, sep = " in "))
 ggsave(paste(.x, .y, ".png", sep = ""),
 width = 3, height = 3)
})
```

Exercise 6.22
First, we write a function for computing the mean of a vector with a loop:

```
mean_loop <- function(x)
{
 m <- 0
 n <- length(x)
 for(i in seq_along(x))
 {
 m <- m + x[i]/n
 }
 return(m)
}
```

Next, we run the functions once, and then benchmark them:
mean_loop is several times slower than mean. The memory usage of both functions is negligible.

**Exercise 6.23**

We can compare the three solutions as follows:

```r
x <- 1:10000
mean_loop(x)
mean(x)

library(bench)
mark(mean(x), mean_loop(x))

library(data.table)
library(dplyr)
library(nycflights13)
library(bench)

Make a data.table copy of the data:
flights.dt <- as.data.table(flights)

Wrap the solutions in functions (using global assignment to better
monitor memory usage):
base_filter <- function() { flights0101 <<- flights[flights$month ==
 1 & flights$day == 1,] }
dt_filter <- function() { flights0101 <<- flights.dt[month == 1 &
 day == 1,] }
dplyr_filter <- function() { flights0101 <<- flights %>% filter(
 month == 1, day == 1) }

Compile the functions:
library(compiler)
base_filter <- cmpfun(base_filter)
dt_filter <- cmpfun(dt_filter)
dplyr_filter <- cmpfun(dplyr_filter)

benchmark the solutions:
bm <- mark(base_filter(), dt_filter(), dplyr_filter())
bm
plot(bm)
```

We see that **dplyr** is substantially faster and more memory efficient than the base R solution, but that **data.table** beats them both by a margin.
Chapter 7

Exercise 7.1
The parameter \texttt{replace} controls whether or not replacement is used. To draw 5 random numbers with replacement, we use:

\begin{verbatim}
\texttt{sample(1:10, 5, replace = TRUE)}
\end{verbatim}

Exercise 7.2
As an alternative to \texttt{sample(1:10, n, replace = TRUE)} we could use \texttt{runif} to generate random numbers from 1:10. This can be done in at least three different ways.

1. Generating (decimal) numbers between 0 and 10 and rounding up to the nearest integer:

\begin{verbatim}
n <- 10  # Generate 10 numbers
ceiling(runif(n, 0, 10))
\end{verbatim}

2. Generating (decimal) numbers between 1 and 11 and rounding down to the nearest integer:

\begin{verbatim}
floor(runif(n, 1, 11))
\end{verbatim}

3. Generating (decimal) numbers between 0.5 and 10.5 and rounding to the nearest integer:

\begin{verbatim}
round(runif(n, 0.5, 10.5))
\end{verbatim}

Using \texttt{sample(1:10, n, replace = TRUE)} is more straightforward in this case, and is the recommended approach.

Exercise 7.3
First, we compare the histogram of the data to the normal density function:

\begin{verbatim}
library(ggplot2)
ggplot(msleep, aes(x = sleep_total)) +
  geom_histogram(colour = "black", aes(y = ..density..)) +
  geom_density(colour = "blue", size = 2) +
  geom_function(fun = dnorm, colour = "red", size = 2,
                args = list(mean = mean(msleep$sleep_total),
                             sd = sd(msleep$sleep_total)))
\end{verbatim}

The density estimate is fairly similar to the normal density, but there appear to be too many low values in the data.

Then a normal Q-Q plot:
ggplot(msleep, aes(sample = sleep_total)) +
  geom_qq() + geom_qq_line()

There are some small deviations from the line, but no large deviations. To decide whether these deviations are large enough to be a concern, it may be a good idea to compare this Q-Q-plot to Q-Q-plots from simulated normal data:

```r
Create a Q-Q-plot for the total sleep data, and store it in a list:
qqplots <- list(ggplot(msleep, aes(sample = sleep_total)) +
 geom_qq() + geom_qq_line() + ggtitle("Actual data"))

Compute the sample size n:
n <- sum(!is.na(msleep$sleep_total))

Generate 8 new datasets of size n from a normal distribution.
Then draw Q-Q-plots for these and store them in the list:
for(i in 2:9) {
 generated_data <- data.frame(normal_data = rnorm(n, 10, 1))
 qqplots[[i]] <- ggplot(generated_data, aes(sample = normal_data)) +
 geom_qq() + geom_qq_line() + ggtitle("Simulated data")
}

Plot the resulting Q-Q-plots side-by-side:
library(patchwork)
(qqplots[[1]] + qqplots[[2]] + qqplots[[3]]) /
(qqplots[[4]] + qqplots[[5]] + qqplots[[6]]) /
(qqplots[[7]] + qqplots[[8]] + qqplots[[9]])
```

The Q-Q-plot for the real data is pretty similar to those from the simulated samples. We can’t rule out the normal distribution.

Nevertheless, perhaps the lognormal distribution would be a better fit? We can compare its density to the histogram, and draw a Q-Q plot:

```r
Histogram:
ggplot(msleep, aes(x = sleep_total)) +
 geom_histogram(colour = "black", aes(y = ..density..)) +
 geom_density(colour = "blue", size = 2) +
 geom_function(fun = dlnorm, colour = "red", size = 2,
 args = list(meanlog = mean(log(msleep$sleep_total)),
 sdlog = sd(log(msleep$sleep_total))))

Q-Q plot:
```
The right tail of the distribution differs greatly from the data. If we have to choose between these two distributions, then the normal distribution seems to be the better choice.

**Exercise 7.4**

1. The documentation for `shapiro.test` shows that it takes a vector containing the data as input. So to apply it to the sleeping times data, we use:
   ```r
 library(ggplot2)
 shapiro.test(msleep$sleep_total)
   ```
   The p-value is 0.21, meaning that we can’t reject the null hypothesis of normality - the test does not indicate that the data is non-normal.

2. Next, we generate data from a $\chi^2(100)$ distribution, and compare its distribution to a normal density function:
   ```r
 generated_data <- data.frame(x = rchisq(2000, 100))
 ggplot(generated_data, aes(x)) +
 geom_histogram(colour = "black", aes(y = ..density..)) +
 geom_density(colour = "blue", size = 2) +
 geom_function(fun = dnorm, colour = "red", size = 2,
 args = list(mean = mean(generated_data$x),
 sd = sd(generated_data$x)))
   ```
   The fit is likely to be very good - the data is visually very close to the normal distribution. Indeed, it is rare in practice to find real data that is closer to the normal distribution than this.

   However, the Shapiro-Wilk test probably tells a different story:
   ```r
 shapiro.test(generated_data$x)
   ```
   The lesson here is that if the sample size is large enough, the Shapiro-Wilk test (and any other test for normality, for that matter) is likely to reject normality even if the deviation from normality is tiny. When the sample size is too large, the power of the test is close to 1 even for very small deviations. On the other hand, if the sample size is small, the power of the Shapiro-Wilk test is low, meaning that it can’t be used to detect non-normality.

   In summary, you probably shouldn’t use formal tests for normality at all. And I say that as someone who has written two papers introducing new tests for normality!
Exercise 7.5
As in Section 3.3, we set `file_path` to the path to `vas.csv` and load the data using the code from Exercise 3.8:

```r
vas <- read.csv(file_path, sep = ";", dec = ",", skip = 4)
```

The null hypothesis is that the mean $\mu$ is less than or equal to 6, meaning that the alternative is that $\mu$ is greater than 6. To perform the test, we run:

```r
t.test(vas$VAS, mu = 6, alternative = "greater")
```

The average VAS isn’t much higher than 6 - it’s 6.4 - but because the sample size is fairly large ($n = 2,351$) we are still able to detect that it indeed is greater.

Exercise 7.6

First, we assume that `delta` is 0.5 and that the standard deviation is 2, and want to find the $n$ required to achieve 95% power at a 5% significance level:

```r
power.t.test(power = 0.95, delta = 0.5, sd = 2, sig.level = 0.05,
 type = "one.sample", alternative = "one.sided")
```

We see than $n$ needs to be at least 175 to achieve the desired power.

The actual sample size for this dataset was $n = 2,351$. Let’s see what power that gives us:

```r
power.t.test(n = 2351, delta = 0.5, sd = 2, sig.level = 0.05,
 type = "one.sample", alternative = "one.sided")
```

The power is 1 (or rather, very close to 1). We’re more or less guaranteed to find statistical evidence that the mean is greater than 6 if the true mean is 6.5!

Exercise 7.7

First, let’s compute the proportion of herbivores and carnivores that sleep for more than 7 hours a day:

```r
library(ggplot2)
herbivores <- msleep[msleep$vore == "herbi",]
n1 <- sum(!is.na(herbivores$sleep_total))
x1 <- sum(herbivores$sleep_total > 7, na.rm = TRUE)
carnivores <- msleep[msleep$vore == "carni",]
n2 <- sum(!is.na(carnivores$sleep_total))
x2 <- sum(carnivores$sleep_total > 7, na.rm = TRUE)
```
The proportions are 0.625 and 0.68, respectively. To obtain a confidence interval for the difference of the two proportions, we use `binomDiffCI` as follows:

```
library(MKinfer)
binomDiffCI(x1, x2, n1, n2, method = "wilson")
```

Exercise 7.13

To run the same simulation for different $n$, we will write a function for the simulation, with the sample size $n$ as an argument:

```
Function for our custom estimator:
max_min_avg <- function(x)
{
 return((max(x)+min(x))/2)
}

Function for simulation:
simulate_estimators <- function(n, mu = 0, sigma = 1, B = 1e4)
{
 cat(n, "\n")
 res <- data.frame(x_mean = vector("numeric", B),
 x_median = vector("numeric", B),
 x_mma = vector("numeric", B))

 # Start progress bar:
 pbar <- txtProgressBar(min = 0, max = B, style = 3)

 for(i in seq_along(res$x_mean))
 {
 x <- rnorm(n, mu, sigma)
 res$x_mean[i] <- mean(x)
 res$x_median[i] <- median(x)
 res$x_mma[i] <- max_min_avg(x)

 # Update progress bar
 setTxtProgressBar(pbar, i)
 }
 close(pbar)

 # Return a list containing the sample size,
 # and the simulation results:
 return(list(n = n,
 bias = colMeans(res-mu),
 vars = apply(res, 2, var)))
```
We could write a `for` loop to perform the simulation for different values of \( n \). Alternatively, we can use a function, as in Section 6.5. Here are two examples of how this can be done:

```r
Create a vector of samples sizes:
n_vector <- seq(10, 100, 10)

Run a simulation for each value in n_vector:

Using base R:
res <- apply(data.frame(n = n_vector), 1, simulate_estimators)

Using purrr:
library(purrr)
res <- map(n_vector, simulate_estimators)
```

Next, we want to plot the results. We need to extract the results from the list `res` and store them in a data frame, so that we can plot them using `ggplot2`.

```r
simres <- matrix(unlist(res), 10, 7, byrow = TRUE)
simres <- data.frame(simres)
names(simres) <- names(unlist(res))[1:7]
simres
```

Transforming the data frame from wide to long format (Section 5.11) makes plotting easier.

We can do this using `data.table`:

```r
library(data.table)
simres2 <- data.table(melt(simres, id.vars = c("n"),
 measure.vars = 2:7))
simres2[, c("measure", "estimator") := tstrsplit(variable, ".", fixed = TRUE)]
```

...or with `tidyr`:

```r
library(tidyr)
simres %>% pivot_longer(names(simres)[2:7],
 names_to = "variable",
 values_to = "value") %>%
 separate(variable, into = c("measure", "estimator"),
 sep = "[.]") -> simres2
```

We are now ready to plot the results:
library(ggplot2)

# Plot the bias, with a reference line at 0:
ggplot(subset(simres2, measure == "bias"), aes(n, value, col = estimator)) +
  geom_line() +
  geom_hline(yintercept = 0, linetype = "dashed") +
  ggtitle("Bias")

# Plot the variance:
ggplot(subset(simres2, measure == "vars"), aes(n, value, col = estimator)) +
  geom_line() +
  ggtitle("Variance")

All three estimators have a bias close to 0 for all values of \( n \) (indeed, we can verify analytically that they are unbiased). The mean has the lowest variance for all \( n \), with the median as a close competitor. Our custom estimator has a higher variance, that also has a slower decrease as \( n \) increases. In summary, based on bias and variance, the mean is the best estimator for the mean of a normal distribution.

**Exercise 7.14**

To perform the same simulation with \( t(3) \)-distributed data, we can reuse the same code as in Exercise 7.13, only replacing three lines:

- The arguments of `simulate_estimators` (mu and sigma are replaced by the degrees of freedom `df` of the \( t \)-distribution,
- The line were the data is generated (`rt` replaces `rnorm`),
- The line were the bias is computed (the mean of the \( t \)-distribution is always 0).

```R
Function for our custom estimator:
max_min_avg <- function(x)
{
 return((max(x)+min(x))/2)
}

Function for simulation:
simulate_estimators <- function(n, df = 3, B = 1e4)
{
 cat(n, "\n")
 res <- data.frame(x_mean = vector("double", B),
 x_median = vector("double", B),
 x_mma = vector("double", B))

 # Start progress bar:
```
pbar <- txtProgressBar(min = 0, max = B, style = 3)

for(i in seq_along(res$x_mean))
{
  x <- rt(n, df)
  res$x_mean[i] <- mean(x)
  res$x_median[i] <- median(x)
  res$x_mma[i] <- max_min_avg(x)

  # Update progress bar
  setTxtProgressBar(pbar, i)
}
close(pbar)

# Return a list containing the sample size, # and the simulation results:
return(list(n = n,
            bias = colMeans(res-0),
            vars = apply(res, 2, var)))
}

To perform the simulation, we can then e.g. run the following, which has been copied from the solution to the previous exercise.

# Create a vector of samples sizes:
N <- seq(10, 100, 10)

# Run a simulation for each value in N:
res <- apply(data.frame(n = N), 1, simulate_estimators)

# Reformat the results:
simres <- matrix(unlist(res), 10, 7, byrow = TRUE)
simres <- data.frame(simres)
names(simres) <- names(unlist(res))[1:7]
library(data.table)
simres2 <- data.table(melt(simres, id.vars = c("n"),
                         measure.vars = 2:7))
simres2[, c("measure", "estimator") := tstrsplit(variable, ".", fixed = TRUE)]

# Plot the result
library(ggplot2)
# Plot the bias, with a reference line at 0:
ggplot(subset(simres2, measure == "bias"), aes(n, value, 
       col = estimator)) +
The results are qualitatively similar to those for normal data.

**Exercise 7.15**

We will use the functions that we created to simulate the type I error rates and powers of the three tests in Sections 7.4 and 7.5.3. Also, we must make sure to load the MKinfer package that contains `perm.t.test`.

To compare the type I error rates, we only need to supply the function `rt` for generating data and the parameter `df = 3` to clarify that a t(3)-distribution should be used:

```r
simulate_type_I(20, 20, rt, B = 9999, df = 3)
simulate_type_I(20, 30, rt, B = 9999, df = 3)
```

Here are the results from my runs:

<table>
<thead>
<tr>
<th>Balanced sample sizes:</th>
<th>p_t_test</th>
<th>p_perm_t_test</th>
<th>p_wilcoxon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0434</td>
<td>0.0481</td>
<td>0.0486</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Imbalanced sample sizes:</th>
<th>p_t_test</th>
<th>p_perm_t_test</th>
<th>p_wilcoxon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0430</td>
<td>0.0486</td>
<td>0.0467</td>
</tr>
</tbody>
</table>

The old-school t-test appears to be a little conservative, with an actual type I error rate close to 0.043. We can use `binomDiffCI` from MKinfer to get a confidence interval for the difference in type I error rate between the old-school t-test and the permutation t-test:

```r
B <- 9999
binomDiffCI(B*0.04810481, B*0.04340434, B, B, method = "wilson")
```

The confidence interval is (−0.001, 0.010). Even though the old-school t-test appeared to have a lower type I error rate, we cannot say for sure, as a difference of 0 is included in the confidence interval. Increasing the number of simulated samples to, say, 99,999, might be required to detect any differences between the different tests.
Next, we compare the power of the tests. For the function used to simulate data for the second sample, we add a $+1$ to shift the distribution to the right (so that the mean difference is 1):

```r
Balanced sample sizes:
simulate_power(20, 20, function(n) { rt(n, df = 3,) },
 function(n) { rt(n, df = 3) + 1 },
 B = 9999)
Imbalanced sample sizes:
simulate_power(20, 30, function(n) { rt(n, df = 3,) },
 function(n) { rt(n, df = 3) + 1 },
 B = 9999)
```

Here are the results from my runs:

```r
Balanced sample sizes:
 p_t_test p_perm_t_test p_wilcoxon
 0.5127513 0.5272527 0.6524652
Imbalanced sample sizes:
 p_t_test p_perm_t_test p_wilcoxon
 0.5898590 0.6010601 0.7423742
```

The Wilcoxon-Mann-Whitney test has the highest power in this example.

**Exercise 7.16**

Both the functions that we created in Section 7.6.1, `simulate_power` and `power.cor.test` include ... in their list of arguments, which allows us to pass additional arguments to interior functions. In particular, the line in `simulate_power` where the p-value for the correlation test is computed, contains this placeholder:

```
p_values[i] <- cor.test(x[,1], x[,2], ...)$p.value
```

This means that we can pass the argument `method = "spearman"` to use the functions to compute the sample size for the Spearman correlation test. Let’s try it:

```r
power.cor.test(n_start = 10, rho = 0.5, power = 0.9,
 method = "spearman")
power.cor.test(n_start = 10, rho = 0.2, power = 0.8,
 method = "spearman")
```

In my runs, the Pearson correlation test required the sample sizes $n = 45$ and $n = 200$, whereas the Spearman correlation test required larger sample sizes: $n = 50$ and $n = 215$. 
Exercise 7.17

First, we create a function that simulates the expected width of the Clopper-Pearson interval for a given \( n \) and \( p \):

```r
cp_width <- function(n, p, level = 0.05, B = 999) {
 widths <- rep(NA, B)

 # Start progress bar:
 pbar <- txtProgressBar(min = 0, max = B, style = 3)

 for (i in 1:B) {
 # Generate binomial data:
 x <- rbinom(1, n, p)

 # Compute interval width:
 interval <- binomCI(x, n, conf.level = 0.95,
 method = "clopper-pearson")$conf.int

 # Update progress bar:
 setTxtProgressBar(pbar, i)
 }

 close(pbar)

 return(mean(widths))
}
```

Next, we create a function with a `while` loop that finds the sample sizes required to achieve a desired expected width:

```r
cp_ssize <- function(n_start = 10, p, n_incr = 5, level = 0.05, width = 0.1, B = 999) {
 # Set initial values
 n <- n_start
 width_now <- 1

 # Check power for different sample sizes:
 while(width_now > width) {
 width_now <- cp_width(n, p, level, B)
 cat("n =", n, " - Width:", width_now, "\n")
 n <- n + n_incr
 }
}
```
n <- n + n_incr
}

# Return the result:
cat("\nWhen n =", n, "the expected width is", round(width, 3), "\n")
return(n)
}

Finally, we run our simulation for \( p = 0.1 \) (with expected width 0.01) and \( p = 0.3 \) (expected width 0.05) and compare the results to the asymptotic answer:

# p = 0.1
# Asymptotic answer:
ssize.propCI(prop = 0.1, width = 0.01, method = "clopper-pearson")

# The asymptotic answer is 14,029 - so we need to set a fairly high
# starting value for n in our simulation!
cp_ssize(n_start = 14020, p = 0.1, n_incr = 1, level = 0.05,
    width = 0.01, B = 9999)

#######

# p = 0.3, width = 0.05
# Asymptotic answer:
ssize.propCI(prop = 0.3, width = 0.1, method = "clopper-pearson")

# The asymptotic answer is 343.
cp_ssize(n_start = 335, p = 0.3, n_incr = 1, level = 0.05,
    width = 0.1, B = 9999)

As you can see, the asymptotic results are very close to those obtained from the simulation, and so using `ssize.propCI` is preferable in this case, as it is much faster.

**Exercise 7.18**

If we want to assume that the two populations have equal variances, we first have to create a centred dataset, where both groups have mean 0. We can then draw observations from this sample, and shift them by the two group means:

```r
library(ggplot2)
boot_data <- na.omit(subset(msleep, vore == "carni" | vore == "herbi")[,c("sleep_total", "vore")])

Compute group means and sizes:
group_means <- aggregate(sleep_total ~ vore,
data = boot_data, FUN = mean)
group_sizes <- aggregate(sleep_total ~ vore,
 data = boot_data, FUN = length)
n1 <- group_sizes[1, 2]

Create a centred dataset, where both groups have mean 0:
boot_data$sleep_total[boot_data$vore == "carni"] <-
 boot_data$sleep_total[boot_data$vore == "carni"] -
 group_means[1, 2]
boot_data$sleep_total[boot_data$vore == "herbi"] <-
 boot_data$sleep_total[boot_data$vore == "herbi"] -
 group_means[2, 2]

Verify that we've centred the two groups:
aggregate(sleep_total ~ vore, data = boot_data, FUN = mean)

First, we resample from the centred data sets. Then we label
some observations as carnivores, and add the group mean for
carnivores to them, and label some as herbivores and add
that group mean instead. That way both groups are used to
estimate the variability of the observations.
mean_diff_msleep <- function(data, i)
{
 # Create a sample with the same mean as the carnivore group:
 sample1 <- data[i[1:n1], 1] + group_means[1, 2]
 # Create a sample with the same mean as the herbivore group:
 sample2 <- data[i[(n1+1):length(i)], 1] + group_means[2, 2]
 # Compute the difference in means:
 return(mean(sample1$sleep_total) - mean(sample2$sleep_total))
}

library(boot)

Do the resampling:
boot_res <- boot(boot_data,
 mean_diff_msleep,
 9999)

Compute confidence intervals:
boot.ci(boot_res, type = c("perc", "bca"))

The resulting percentile interval is close to that which we obtained without assuming
equal variances. The BCa interval is however very different.
Exercise 7.19
We use the percentile confidence interval from the previous exercise to compute p-values as follows (the null hypothesis is that the parameter is 0):

```r
library(boot.pval)
boot.pval(boot_res, type = "perc", theta_null = 0)
```

A more verbose solution would be to write a `while` loop:

```r
# The null hypothesis is there the difference is 0:
diff_null <- 0

# Set initial conditions:
in_interval <- TRUE
alpha <- 0

# Find the lowest alpha for which diff_null is in the interval:
while(in_interval)
{
  alpha <- alpha + 0.001
  interval <- boot.ci(boot_res,
    conf = 1 - alpha,
    type = "perc")$percent[4:5]
}

# Print the p-value:
alpha
```

The p-value is approximately 0.52, and we can not reject the null hypothesis.

Chapter 8
Exercise 8.1
We set `file_path` to the path of `sales-weather.csv`. To load the data, fit the model and plot the results, we do the following:

```r
# Load the data:
weather <- read.csv(file_path, sep = ";")
View(weather)

# Fit model:
m <- lm(TEMPERATURE ~ SUN_HOURS, data = weather)
```
The coefficient for `SUN_HOURS` is not significantly non-zero at the 5% level. The R^2 value is 0.035, which is very low. There is little evidence of a connection between the number of sun hours and the temperature during this period.

Exercise 8.2

We fit a model using the formula:

```r
m <- lm(mpg ~ ., data = mtcars)
summary(m)
```

What we’ve just done is to create a model where all variables from the data frame (except `mpg`) are used as explanatory variables. This is the same model as we’d have obtained using the following (much longer) code:

```r
m <- lm(mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb, data = mtcars)
```

The `~ .` shorthand is very useful when you want to fit a model with a lot of explanatory variables.

Exercise 8.3

First, we create the dummy variable:

```r
weather$prec_dummy <- factor(weather$PRECIPITATION > 0)
```

Then, we fit the new model and have a look at the results. We won’t centre the `SUN_HOURS` variable, as the model is easy to interpret without centring. The intercept corresponds to the expected temperature on a day with 0 `SUN_HOURS` and no precipitation.

```r
m <- lm(TEMPERATURE ~ SUN_HOURS*prec_dummy, data = weather)
summary(m)
```

Both `SUN_HOURS` and the dummy variable are significantly non-zero. In the next section, we’ll have a look at how we can visualise the results of this model.
Exercise 8.4

We run the code to create the two data frames. We then fit a model to the first dataset `exdata1`, and make some plots:

```r
m1 <- lm(y ~ x, data = exdata1)

# Show fitted values in scatterplot:
library(ggplot2)
m1_pred <- data.frame(x = exdata1$x, y_pred = predict(m1))
ggplot(exdata1, aes(x, y)) +
  geom_point() +
  geom_line(data = m1_pred, aes(x = x, y = y_pred),
            colour = "red")

# Residual plots:
library(ggfortify)
autoplot(m1, which = 1:6, ncol = 2, label.size = 3)
```

There are clear signs of nonlinearity here, that can be seen both in the scatterplot and the residuals versus fitted plot.

Next, we do the same for the second dataset:

```r
m2 <- lm(y ~ x, data = exdata2)

# Show fitted values in scatterplot:
m2_pred <- data.frame(x = exdata2$x, y_pred = predict(m2))
ggplot(exdata2, aes(x, y)) +
  geom_point() +
  geom_line(data = m2_pred, aes(x = x, y = y_pred),
            colour = "red")

# Residual plots:
library(ggfortify)
autoplot(m2, which = 1:6, ncol = 2, label.size = 3)
```

There is a strong indication of heteroscedasticity. As is seen e.g. in the scatterplot and in the scale-location plot, the residuals appear to vary more the larger \(x \) becomes.

Exercise 8.5

1. First, we plot the observed values against the fitted values for the two models.

```r
# The two models:
m1 <- lm(TEMPERATURE ~ SUN_HOURS, data = weather)
m2 <- lm(TEMPERATURE ~ SUN_HOURS*prec_dummy, data = weather)
```
n <- nrow(weather)
models <- data.frame(
 Observed = rep(weather$TEMPERATURE, 2),
 Fitted = c(predict(m1), predict(m2)),
 Model = rep(c("Model 1", "Model 2"), c(n, n)))

ggplot(models, aes(Fitted, Observed)) +
 geom_point(colour = "blue") +
 facet_wrap(~ Model, nrow = 3) +
 geom_abline(intercept = 0, slope = 1) +
 xlab("Fitted values") + ylab("Observed values")

The first model only predicts values within a fairly narrow interval. The second model does a somewhat better job of predicting high temperatures.

2. Next, we create residual plots for the second model.

library(ggfortify)
autoplot(m2, which = 1:6, ncol = 2, label.size = 3)

There are no clear trends or signs of heteroscedasticity. There are some deviations from normality in the tail of the residual distribution. There are a few observations - 57, 76 and 83, that have fairly high Cook’s distance. Observation 76 also has a very high leverage. Let’s have a closer look at them:

weather[c(57, 76, 83),]

As we can see using sort(weather$SUN_HOURS) and min(weather$TEMPERATURE), observation 57 corresponds to the coldest day during the period, and observations 76 and 83 to the two days with the highest numbers of sun hours. Neither of them deviate too much from other observations though, so it shouldn’t be a problem that their Cook’s distances are little high.

Exercise 8.6

We run boxcox to find a suitable Box-Cox transformation for our model:

m <- lm(TEMPERATURE ~ SUN_HOURS*prec_dummy, data = weather)

library(MASS)
boxcox(m)

You’ll notice an error message, saying:

Error in boxcox.default(m) : response variable must be positive

The boxcox method can only be used for non-negative response variables. We can solve this e.g. by transforming the temperature (which currently is in degrees Celsius)
to degrees Fahrenheit, or by adding a constant to the temperature (which only will affect the intercept of the model, and not the slope coefficients). Let’s try the former:

```r
code
weather$TEMPERATUREplus10 <- weather$TEMPERATURE + 10
m <- lm(TEMPERATUREplus10 ~ SUN_HOURS*prec_dummy, data = weather)
boxcox(m)
```

The value $\lambda = 1$ is inside the interval indicated by the dotted lines. This corresponds to no transformation at all, meaning that there is no indication that we should transform our response variable.

Exercise 8.7

We refit the model using:

```r
code
library(lmPerm)
m <- lmp(TEMPERATURE ~ SUN_HOURS*prec_dummy, data = weather)
summary(m)
```

The main effects are still significant at the 5% level.

Exercise 8.8

The easiest way to do this is to use `boot_summary`:

```r
code
library(MASS)
m <- rlm(TEMPERATURE ~ SUN_HOURS*prec_dummy, data = weather)
library(boot.pval)
boot_summary(m, type = "perc", method = "residual")
```

We can also use `Boot`:

```r
code
library(car)
boot_res <- Boot(m, method = "residual")

# Compute 95% confidence intervals using confint
confint(boot_res, type = "perc")
```

If instead we want to use `boot`, we begin by fitting the model:

```r
code
library(MASS)
m <- rlm(TEMPERATURE ~ SUN_HOURS*prec_dummy, data = weather)
```

Next, we compute the confidence intervals using `boot` and `boot.ci` (note that we use `rlm` inside the `coefficients` function!):
library(boot)

coefficients <- function(formula, data, i, predictions, residuals) {
 # Create the bootstrap value of response variable by
 # adding a randomly drawn residual to the value of the
 # fitted function for each observation:
 data[, all.vars(formula)[1]] <- predictions + residuals[i]

 # Fit a new model with the bootstrap value of the response
 # variable and the original explanatory variables:
 m <- rlm(formula, data = data)
 return(coef(m))
}

Fit the linear model:
m <- rlm(TEMPERATURE ~ SUN_HOURS*prec_dummy, data = weather)

Compute scaled and centred residuals:
res <- residuals(m)/sqrt(1 - lm.influence(m)$hat)
res <- res - mean(res)

Run the bootstrap, extracting the model formula and the
fitted function from the model m:
boot_res <- boot(data = mtcars, statistic = coefficients,
 R = 999, formula = formula(m),
 predictions = predict(m),
 residuals = res)

Compute confidence intervals:
boot.ci(boot_res, type = "perc", index = 1) # Intercept
boot.ci(boot_res, type = "perc", index = 2) # Sun hours
boot.ci(boot_res, type = "perc", index = 3) # Precipitation dummy
boot.ci(boot_res, type = "perc", index = 4) # Interaction term

Using the connection between hypothesis tests and confidence intervals, to see
whether an effect is significant at the 5 % level, you can check whether 0 is contained
in the confidence interval. If not, then the effect is significant.

Exercise 8.9

We fit the model and then use boot_summary with method = "case":
m <- lm(mpg ~ hp + wt, data = mtcars)
library(boot.pval)
boot_summary(m, type = "perc", method = "case", R = 9999)
boot_summary(m, type = "perc", method = "residual", R = 9999)

In this case, the resulting confidence intervals are similar to what we obtained with residual resampling.

Exercise 8.10

First, we prepare the model and the data:

\[
m \leftarrow \text{lm}(\text{TEMPERATURE} \sim \text{SUN_HOURS}\times\text{prec_dummy}, \text{data} = \text{weather})
\]

\[
\text{new_data} \leftarrow \text{data.frame}(\text{SUN_HOURS} = 0, \text{prec_dummy} = "TRUE")
\]

We can then compute the prediction interval using `boot.ci`:

\[
\text{boot_pred} \leftarrow \text{function(data, new_data, model, i, formula, predictions, residuals)\{}
\]

\[
\text{data[,all.vars(formula)[i]]} \leftarrow \text{predictions} + \text{residuals[i]}
\]

\[
\text{m_boot} \leftarrow \text{lm(formula, data = data)}
\]

\[
\text{predict(m_boot, new_data = new_data) + sample(residuals(m_boot), nrow(new_data))}
\]

\[
\}
\]

library(boot)

\[
\text{boot_res} \leftarrow \text{boot(data = m$model, statistic = boot_pred, R = 999, model = m, new_data = new_data, formula = formula(m), predictions = predict(m), residuals = residuals(m))}
\]

\[
95% bootstrap prediction interval:
\]

\[
\text{boot.ci(boot_res, type = "perc")}
\]

Exercise 8.11

\[
\text{autoplot uses standard ggplot2 syntax, so by adding colour = mtcars$cyl to autoplot, we can plot different groups in different colours:}
\]

\[
\text{mtcars$cyl} \leftarrow \text{factor(mtcars$cyl)}
\]

\[
\text{mtcars$am} \leftarrow \text{factor(mtcars$am)}
\]
CHAPTER 13. SOLUTIONS TO EXERCISES

```r
# Fit model and print ANOVA table:
m <- aov(mpg ~ cyl + am, data = mtcars)
library(ggfortify)
autoplot(m, which = 1:6, ncol = 2, label.size = 3,
colour = mtcars$cyl)
```

Exercise 8.12

We rerun the analysis:

```r
# Convert variables to factors:
mtcars$cyl <- factor(mtcars$cyl)
mtcars$am <- factor(mtcars$am)

# Fit model and print ANOVA table:
library(lmPerm)
m <- aovp(mpg ~ cyl + am, data = mtcars)
summary(m)
```

Unfortunately, if you run this multiple times, the p-values will vary a lot. To fix
that, you need to increase the maximum number of iterations allowed, by increasing
maxIter, and changing the condition for the accuracy of the p-value by lowering Ca:

```r
m <- aovp(mpg ~ cyl + am, data = mtcars,
perm = "Prob",
Ca = 1e-3,
maxIter = 1e6)
summary(m)
```

According to ?aovp, the seqs arguments controls which type of table is produced.
It's perhaps not perfectly clear from the documentation, but the default seqs =
FALSE corresponds to a type III table, whereas seqs = TRUE corresponds to a type
I table:

```r
# Type I table:
m <- aovp(mpg ~ cyl + am, data = mtcars,
seqs = TRUE,
perm = "Prob",
Ca = 1e-3,
maxIter = 1e6)
summary(m)
```

Exercise 8.13

We can run the test using the usual formula notation:
kruskal.test(mpg ~ cyl, data = mtcars)

The p-value is very low, and we conclude that the fuel consumption differs between the three groups.

Exercise 8.16

We set file_path to the path of shark.csv and then load and inspect the data:

```r
sharks <- read.csv(file_path, sep = ";")
View(sharks)
```

We need to convert the Age variable to a numeric, which will cause us to lose information (“NAs introduced by coercion”) about the age of the persons involved in some attacks, i.e. those with values like 20’s and 25 or 28, which cannot be automatically coerced into numbers:

```r
sharks$Age <- as.numeric(sharks$Age)
```

Similarly, we’ll convert Sex. and Fatal..Y.N. to factor variables:

```r
sharks$Sex. <- factor(sharks$Sex, levels = c("F", "M"))
sharks$Fatal..Y.N. <- factor(sharks$Fatal..Y.N., levels = c("N", "Y"))
```

We can now fit the model:

```r
m <- glm(Fatal..Y.N. ~ Age + Sex., data = sharks, family = binomial)
summary(m)
```

Judging from the p-values, there is no evidence that sex and age affect the probability of an attack being fatal.

Exercise 8.17

We use the same logistic regression model for the wine data as before:

```r
m <- glm(type ~ pH + alcohol, data = wine, family = binomial)
```

The broom functions work also for generalised linear models. As for linear models, tidy gives the table of coefficients and p-values, glance gives some summary statistics, and augment adds fitted values and residuals to the original dataset:

```r
library(broom)
tidy(m)
glance(m)
augment(m)
```
Exercise 8.18

Using the model \(m \) from the other exercise, we can now do the following.

1. Compute asymptotic confidence intervals:

```
library(MASS)
confint(m)
```

2. Next, we compute bootstrap confidence intervals and p-values. In this case, the response variable is missing for a lot of observations. In order to use the same number of observations in our bootstrapping as when fitting the original model, we need to add a line to remove those observations (as in Section 5.8.2).

```
library(boot)

# Try fitting the model without removing missing values:
boot_summary(m, type = "perc", method = "case")

# Remove missing values, refit the model, and then run # boot_summary again:
sharks2 <- na.omit(sharks, "Fatal..Y.N."

m <- glm(Fatal..Y.N. ~ Age + Sex., data = sharks2,
        family = binomial)
boot_summary(m, type = "perc", method = "case")
```

If you prefer writing your own bootstrap code, you could proceed as follows:

```
library(boot)

coefficients <- function(formula, data, predictions, ...) {
    # Remove rows where the response variable is missing:
data <- na.omit(data, all.vars(formula)[1])

    # Check whether the response variable is a factor or # numeric, and then resample:
    if(is.factor(data[, all.vars(formula)[1]])) {
        # If the response variable is a factor:
data[, all.vars(formula)[1]] <-
factor(levels(data[, all.vars(formula)[1]])[1 + rbinom(nrow(data),
                                                     1, predictions)]) } else {

        # If the response variable is numeric:
data[, all.vars(formula)[1]] <-
        unique(data[, all.vars(formula)[1]])[1 + rbinom(nrow(data),
                                                1, predictions)]
    }

    m <- glm(formula, data = data, family = binomial)
    return(coef(m))
```
boot_res <- boot(data = sharks, statistic = coefficients,
 R=999, formula = formula(m),
 predictions = predict(m, type = "response"))

Compute confidence intervals:
boot.ci(boot_res, type = "perc", index = 1) # Intercept
boot.ci(boot_res, type = "perc", index = 2) # Age
boot.ci(boot_res, type = "perc", index = 3) # Sex.M

Compute p-values:

The null hypothesis is that the effect (beta coefficient)
is 0:
beta_null <- 0

Set initial conditions:
in_interval <- TRUE
alpha <- 0

Find the lowest alpha for which beta_null is in the
interval:
while(in_interval)
{
 # Based on the asymptotic test, we expect the p-value
 # to not be close to 0. We therefore increase alpha by
 # 0.01 instead of 0.001 in each iteration.
 alpha <- alpha + 0.01
 interval <- boot.ci(boot_res,
 conf = 1 - alpha,
 type = "perc", index = 2)$perc[4:5]
}

Print the p-value:
alpha

Exercise 8.19

We draw a binned residual plot for our model:

m <- glm(Fatal..Y.N. ~ Age + Sex., data = sharks, family = binomial)
There are a few points outside the interval, but not too many. There is not trend, i.e. there is for instance no sign that the model has a worse performance when it predicts a larger probability of a fatal attack.

Next, we plot the Cook’s distances of the observations:

```r
res <- data.frame(Index = 1:length(cooks.distance(m)),
                   CooksDistance = cooks.distance(m))

# Plot index against the Cook's distance to find influential points:
# ggplot(res, aes(Index, CooksDistance)) +
#   geom_point() +
#   geom_text(aes(label = ifelse(CooksDistance > 0.05,
#                                rownames(res), "")),
#             hjust = 1.1)
```

There are a few points with a high Cook’s distance. Let’s investigate point 116, which has the highest distance:

```r
sharks[116,]
```

This observation corresponds to the oldest person in the dataset, and a fatal attack. Being an extreme observation, we’d expect it to have a high Cook’s distance.

Exercise 8.20

First, we have a look at the `quakes` data:

```r
?quakes
View(quakes)
```

We then fit a Poisson regression model with `stations` as response variable and `mag` as explanatory variable:

```r
m <- glm(stations ~ mag, data = quakes, family = poisson)
summary(m)
```

We plot the fitted values against the observed values, create a binned residual plot, and perform a test of overdispersion:

```r
# Plot observed against fitted:
res <- data.frame(Observed = quakes$stations,
                   Fitted = predict(m, type = "response"))
```
Visually, the fit is pretty good. As indicated by the test, there are however signs of overdispersion. Let’s try a negative binomial regression instead.

```r
# Fit NB regression:
library(MASS)
m2 <- glm.nb(stations ~ mag, data = quakes)
summary(m2)
```

```r
ggplot(models, aes(Fitted, Observed)) +
geom_point(colour = "blue") +
facet_wrap(~ Model, nrow = 3) +
geom_abline(intercept = 0, slope = 1) +
xlab("Fitted values") + ylab("Observed values")
```

The difference between the models is tiny. We’d probably need to include more variables to get a real improvement of the model.

Exercise 8.21

We can get confidence intervals for the β_j using `boot_summary`, as in previous sections. To get bootstrap confidence intervals for the rate ratios e^{β_j}, we exponentiate the confidence intervals for the β_j:
library(boot.pval)

boot_table <- boot_summary(m, type = "perc", method = "case")

boot_table

Confidence intervals for rate ratios:
exp(boot_table[, 2:3])

Exercise 8.22

First, we load the data and have a quick look at it:

library(nlme)
?Oxboys
View(Oxboys)

Next, we make a plot for each boy (each subject):

ggplot(Oxboys, aes(age, height, colour = Subject)) +
 geom_point() +
 theme(legend.position = "none") +
 facet_wrap(~ Subject, nrow = 3) +
 geom_smooth(method = "lm", colour = "black", se = FALSE)

Both intercepts and slopes seem to vary between individuals. Are they correlated?

Collect the coefficients from each linear model:
library(purrr)
Oxboys %>% split(.\$Subject) %>%
 map(~ lm(height ~ age, data = .)) %>%
 map(coef) -> coefficients

Convert to a data frame:
coefficients <- data.frame(matrix(unlist(coefficients),
 nrow = length(coefficients),
 byrow = TRUE),
 row.names = names(coefficients))

names(coefficients) <- c("Intercept", "Age")

Plot the coefficients:
ggplot(coefficients, aes(Intercept, Age,
 colour = row.names(coefficients))) +
 geom_point() +
 geom_smooth(method = "lm", colour = "black", se = FALSE) +
 labs(fill = "Subject")
Test the correlation:
cor.test(coefficients$Intercept, coefficients$Age)

There is a strong indication that the intercepts and slopes have a positive correlation.
We'll therefore fit a linear mixed model with correlated random intercepts and slopes:

```r
m <- lmer(height ~ age + (1 + age|Subject), data = Oxboys)
summary(m, correlation = FALSE)
```

Exercise 8.22

We'll use the model that we fitted to the Oxboys data in the previous exercise:

```r
library(lme4)
library(nlme)
m <- lmer(height ~ age + (1 + age|Subject), data = Oxboys)
```

First, we install broom.mixed:

```r
install.packages("broom.mixed")
```

Next, we obtain the summary table as a data frame using tidy:

```r
library(broom.mixed)
tidy(m)
```

As you can see, fixed and random effects are shown in the same table. However, different information is displayed for the two types of variables (just as when we use `summary`).

Note that if we fit the model after loading the lmerTest, the tidy table also includes p-values:

```r
library(lmerTest)
m <- lmer(height ~ age + (1 + age|Subject), data = Oxboys)
tidy(m)
```

Exercise 8.24

We use the same model as in the previous exercise:

```r
library(nlme)
m <- lmer(height ~ age + (1 + age|Subject), data = Oxboys)
```

We make some diagnostic plots:

```r
library(ggplot2)
f <- fortify.merMod(m)
```
Plot residuals:
ggplot(fm, aes(.fitted, .resid)) +
 geom_point() +
 geom_hline(yintercept = 0) +
 xlab("Fitted values") + ylab("Residuals")

Compare the residuals of different subjects:
ggplot(fm, aes(Subject, .resid)) +
 geom_boxplot() +
 coord_flip() +
 ylab("Residuals")

Observed values versus fitted values:
ggplot(fm, aes(.fitted, height)) +
 geom_point(colour = "blue") +
 facet_wrap(~ Subject, nrow = 3) +
 geom_abline(intercept = 0, slope = 1) +
 xlab("Fitted values") + ylab("Observed values")

Q-Q plot of residuals:
ggplot(fm, aes(sample = .resid)) +
 geom_qq() + geom_qq_line()

Q-Q plot of random effects:
ggplot(ranef(m)$Subject, aes(sample = ~(Intercept)~)) +
 geom_qq() + geom_qq_line()
ggplot(ranef(m)$Subject, aes(sample = `age`)) +
 geom_qq() + geom_qq_line()

Overall, the fit seems very good. There may be some heteroscedasticity, but nothing too bad. Some subjects have a larger spread in their residuals, which is to be expected in this case - growth in children is non-constant, and a large negative residual is therefore likely to be followed by a large positive residual, and vice versa. The regression errors and random effects all appear to be normally distributed.

Exercise 8.25

To look for an interaction between TVset and Assessor, we draw an interaction plot:

```r
library(lmerTest)
interaction.plot(TVbo$Assessor, TVbo$TVset,
                response = TVbo$Coloursaturation)
```

The lines overlap and follow different patterns, so there appears to be an interaction. There are two ways in which we could include this. Which we choose depends on
what we think our *clusters of correlated measurements* are. If only the assessors are
clusters, we'd include this as a random slope:

```r
m <- lmer(Coloursaturation ~ TVset*Picture + (1 + TVset|Assessor),
           data = TVbo)

m
anova(m)
```

In this case, we think that there is a fixed interaction between each pair of assessor and TV set.

However, if we think that the interaction is random and varies between repetitions, the situation is different. In this case the combination of assessor and TV set are clusters of correlated measurements (which could make sense here, because we have repeated measurements for each assessor-TV set pair). We can then include the interaction as a nested random effect:

```r
m <- lmer(Coloursaturation ~ TVset*Picture + (1|Assessor/TVset),
           data = TVbo)

m
anova(m)
```

Neither of these approaches is inherently superior to the other. Which we choose is a matter of what we think best describes the correlation structure of the data.

In either case, the results are similar, and all fixed effects are significant at the 5 % level.

Exercise 8.26

BROOD, *INDEX* (subject ID number) and *LOCATION* all seem like they could cause measurements to be correlated, and so are good choices for random effects. To keep the model simple, we'll only include random intercepts. We fit a mixed Poisson regression using `glmer`:

```r
library(lme4)

m <- glmer(TICKS ~ YEAR + HEIGHT + (1|BROOD) + (1|INDEX) + (1|LOCATION),
           data = grouseticks, family = poisson)
summary(m, correlation = FALSE)
```

To compute the bootstrap confidence interval for the effect of *HEIGHT*, we use `boot_summary`:

```r
library(boot.pval)

boot_summary(m, type = "perc", R = 100)
```
Exercise 8.27

The ovarian data comes from a randomised trial comparing two treatments for ovarian cancer:

```r
library(survival)
?ovarian
str(ovarian)
```

Let’s plot Kaplan-Meier curves to compare the two treatments:

```r
library(ggfortify)
m <- survfit(Surv(futime, fustat) ~ rx, data = ovarian)
autoplot(m)
```

The parametric confidence interval overlap a lot. Let’s compute a bootstrap confidence interval for the difference in the 75 % quantile of the survival times. We set the quantile level using the q argument in bootkm:

```r
library(Hmisc)

# Create a survival object:
survobj <- Surv(ovarian$futime, ovarian$fustat)

# Get bootstrap replicates of the 75 % quantile for the survival time for the two groups:
q75_surv_time_1 <- bootkm(survobj[ovarian$rx == 1], q = 0.75, B = 999)
q75_surv_time_2 <- bootkm(survobj[ovarian$rx == 2], q = 0.75, B = 999)

# 95 % bootstrap confidence interval for the difference in 75 % quantile of the survival time distribution:
quantile(q75_surv_time_2 - q75_surv_time_1, c(.025,.975), na.rm=TRUE)
```

The resulting confidence interval is very wide!

Exercise 8.28

1. First, we fit a Cox regression model. From ?ovarian we see that the survival/censoring times are given by futime and the censoring status by fustat.

```r
library(survival)
m <- coxph(Surv(futime, fustat) ~ age + rx, 
            data = ovarian, model = TRUE)
summary(m)
```
According to the p-value in the table, which is 0.2, there is no significant difference between the two treatment groups. Put differently, there is no evidence that the hazard ratio for treatment isn’t equal to 1.

To assess the assumption of proportional hazards, we plot the Schoenfeld residuals:

```r
library(survminer)
ggcoxzph(cox.zph(m), var = 1)
ggcoxzph(cox.zph(m), var = 2)
```

There is no clear trend over time, and the assumption appears to hold.

2. To compute a bootstrap confidence interval for the hazard ratio for age, we follow the same steps as in the lung example, using censboot_summary:

```r
library(boot.pval)
censboot_summary(m)
```

All values in the confidence interval are positive, meaning that we are fairly sure that the hazard increases with age.

Exercise 8.29

First, we fit the model:

```r
m <- coxph(Surv(futime, status) ~ age + type + trt, 
            cluster = id, data = retinopathy)
summary(m)
```

To check the assumption of proportional hazards, we make a residual plot:

```r
library(survminer)
ggcoxzph(cox.zph(m), var = 1)
ggcoxzph(cox.zph(m), var = 2)
ggcoxzph(cox.zph(m), var = 3)
```

As there are no trends over time, there is no evidence against the assumption of proportional hazards.

Exercise 8.30

We fit the model using survreg:

```r
library(survival)
m <- survreg(Surv(futime, fustat) ~ ., data = ovarian, 
             dist = "loglogistic")
```

To get the estimated effect on survival times, we exponentiate the coefficients:
According to the model, the survival time increases 1.8 times for patients in treatment group 2, compared to patients in treatment group 1. Running `summary(m)` shows that the p-value for \(rx \) is 0.05, meaning that the result isn’t significant at the 5% level (albeit with the smallest possible margin!).

Exercise 8.31

We set `file_path` to the path to `il2rb.csv` and then load the data (note that it uses a decimal comma):

```r
biomarkers <- read.csv(file_path, sep = ";", dec = ",")
```

Next, we check which measurements that are nondetects, and impute the detection limit 0.25:

```r
censored <- is.na(biomarkers$IL2RB)
biomarkers$IL2RB[censored] <- 0.25

# Check the proportion of nondetects:
mean(censored)
```

27.5% of the observations are left-censored.

To compute bootstrap confidence intervals for the mean of the biomarker level distribution under the assumption of lognormality, we can now use `elnormAltCensored`:

```r
elnormAltCensored(biomarkers$IL2RB, censored, method = "mle",
                  ci = TRUE, ci.method = "bootstrap",
                  n.bootstraps = 999)$interval$limits
```

Exercise 8.32

We set `file_path` to the path to `il2rb.csv` and then load and prepare the data:

```r
biomarkers <- read.csv(file_path, sep = ";", dec = ",")
censored <- is.na(biomarkers$IL2RB)
biomarkers$IL2RB[censored] <- 0.25
```

Based on the recommendations in Zhang et al. (2009), we can now run a Wilcoxon-Mann-Whitney test. Because we’ve imputed the LoD for the nondetects, all observations are included in the test:

```r
wilcox.test(IL2RB ~ Group, data = biomarkers)
```

The p-value is 0.42, and we do not reject the null hypothesis that there is no difference in location.
Chapter 9

Exercise 9.1

1. We load the data and compute the expected values using the formula \(y = 2x_1 - x_2 + x_3 \cdot x_2 \):

```r
exdata <- data.frame(x1 = c(0.87, -1.03, 0.02, -0.25, -1.09, 0.74, 0.09, -1.64, -0.32, -0.33, 1.40, 0.29, -0.71, 1.36, 0.64, -0.78, -0.58, 0.67, -0.90, -1.52, -0.11, -0.65, 0.04, -0.72, 1.71, -1.58, -1.76, 2.10, 0.81, -0.30),
            x2 = c(1.38, 0.14, 1.46, 0.27, -1.02, -1.94, 0.12, -0.64, 0.64, -0.39, 0.28, 0.50, -1.29, 0.52, 0.28, 0.23, 0.05, 3.10, 0.84, -0.66, -1.35, -0.06, -0.66, 0.40, -0.23, -0.97, -0.78, 0.38, 0.49, 0.21),
            x3 = c(1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0),
            y = c(3.47, -0.80, 4.57, 0.16, -1.77, -6.84, 1.28, -0.52, 1.00, -2.50, -1.99, 1.13, -4.26, 1.16, -0.69, 0.89, -1.01, 7.56, 2.33, 0.36, -1.11, -0.53, -1.44, -0.43, 0.69, -2.30, -3.55, 0.99, -0.50, -1.67))

exdata$Ey = 2*exdata$x2 - exdata$x3 + exdata$x3*exdata$x2
```

Next, we plot the expected values against the actual values:

```r
library(ggplot2)

ggplot(exdata, aes(Ey, y)) + geom_point()
```

The points seem to follow a straight line, and a linear model seems appropriate.

2. Next, we fit a linear model to the first 20 observations:

```r
m <- lm(y ~ x1 + x2 + x3, data = exdata[1:20,])
summary(m)
```

The \(R^2 \)-value is pretty high: 0.91. \(x_1 \) and \(x_2 \) both have low p-values, as does the F-test for the regression. We can check the model fit by comparing the fitted values to the actual values. We add a red line that the points should follow if we have a good fit:

```r
ggplot(exdata[1:20,], aes(y, predict(m))) +
  geom_point() +
  geom_abline(intercept = 0, slope = 1, col = "red")
```

The model seems to be pretty good! Now let’s see how well it does when faced with new data.
3. We make predictions for all 10 observations:

```r
exdata$predictions <- predict(m, exdata)
```

We can plot the results for the last 10 observations, which weren’t used when we fitted the model:

```r
ggplot(exdata[21:30,], aes(y, predictions)) +
  geom_point() +
  geom_abline(intercept = 0, slope = 1, col = "red")
```

The results are much worse than before! The correlation between the predicted values and the actual values is very low:

```r
cor(exdata[21:30,]y, exdata[21:30,]$predictions)
```

Despite the good in-sample performance (as indicated e.g. by the high R^2), the model doesn’t seem to be very useful for prediction.

4. Perhaps you noted that the effect of x_3 wasn’t significant in the model. Perhaps the performance will improve if we remove it? Let’s try!

```r
m <- lm(y ~ x1 + x2, data = exdata[1:20,])
summary(m)
```

The p-values and R^2 still look very promising. Let’s make predictions for the new observations and check the results:

```r
exdata$predictions <- predict(m, exdata)

ggplot(exdata[21:30,], aes(y, predictions)) +
  geom_point() +
  geom_abline(intercept = 0, slope = 1, col = "red")

cor(exdata[21:30,]y, exdata[21:30,]$predictions)
```

The predictions are no better than before - indeed, the correlation between the actual and predicted values is even lower this time out!

5. Finally, we fit a correctly specified model and evaluate the results:

```r
m <- lm(y ~ x1 + x2 + x3*x2, data = exdata[1:20,])
summary(m)
exdata$predictions <- predict(m, exdata)

ggplot(exdata[21:30,], aes(y, predictions)) +
  geom_point() +
  geom_abline(intercept = 0, slope = 1, col = "red")
```
The predictive performance of the model remains low, which shows that model mis-
specification wasn’t the (only) reason for the poor performance of the previous mod-
els.

Exercise 9.2

We set `file_path` to the path to `estates.xlsx` and then load the data:

```r
library(openxlsx)
estates <- read.xlsx(file_path)
View(estates)
```

There are a lot of missing values which can cause problems when fitting the model, so let’s remove those:

```r
estates <- na.omit(estates)
```

Next, we fit a linear model and evaluate it with LOOCV using `caret` and `train`:

```r
library(caret)
tc <- trainControl(method = "LOOCV")
m <- train(selling_price ~ ., data = estates, method = "lm", trControl = tc)
```

The $RMSE$ is 547 and the MAE is 395 kSEK. The average selling price in the data ($mean(estates$selling_price)$) is 2843 kSEK, meaning that the MAE is approximately 13 % of the mean selling price. This is not unreasonably high for this application. Prediction errors are definitely expected here, given the fact that we have relatively few variables - the selling price can be expected to depend on several things not captured by the variables in our data (proximity to schools, access to public transport, and so on). Moreover, houses in Sweden are not sold at fixed prices, but subject to bidding, which can cause prices to fluctuate a lot. All in all, and MAE of 395 is pretty good, and, at the very least, the model seems useful for getting a ballpark figure for the price of a house.

Exercise 9.3

We set `file_path` to the path to `estates.xlsx` and then load and clean the data:

```r
library(openxlsx)
estates <- read.xlsx(file_path)
estates <- na.omit(estates)
```
1. Next, we evaluate the model with 10-fold cross-validation a few times:

```r
library(caret)
# Run this several times:
tc <- trainControl(method = "cv", number = 10)
m <- train(selling_price ~ .,
    data = estates,
    method = "lm",
    trControl = tc)
m$results
```

In my runs, the MAE ranged from 391 to 405. Not a massive difference on the scale of the data, but there is clearly some variability in the results.

2. Next, we run repeated 10-fold cross-validations a few times:

```r
# Run this several times:
tc <- trainControl(method = "repeatedcv",
    number = 10, repeats = 100)
m <- train(selling_price ~ .,
    data = estates,
    method = "lm",
    trControl = tc)
m$results
```

In my runs the MAE varied between 396.0 and 397.4. There is still some variability, but it is much smaller than for a simple 10-fold cross-validation.

Exercise 9.4

We set `file_path` to the path to `estates.xlsx` and then load and clean the data:

```r
library(openxlsx)
estates <- read.xlsx(file_path)
estates <- na.omit(estates)
```

Next, we evaluate the model with the bootstrap a few times:

```r
library(caret)
# Run this several times:
tc <- trainControl(method = "boot",
    number = 999)
m <- train(selling_price ~ .,
    data = estates,
    method = "lm",
    trControl = tc)
m$results
```
In my run, the MAE varied between 410.0 and 411.8, meaning that the variability is similar to the with repeated 10-fold cross-validation. When I increased the number of bootstrap samples to 9,999, the MAE stabilised around 411.7.

Exercise 9.5

We load and format the data as in the beginning of Section 9.1.7. We can then fit the two models using `train`:

```r
library(caret)
tc <- trainControl(method = "repeatedcv",
                   number = 10, repeats = 100,
                   savePredictions = TRUE,
                   classProbs = TRUE)

# Model 1 - two variables:
m <- train(type ~ pH + alcohol,
           data = wine,
           trControl = tc,
           method = "glm",
           family = "binomial")

# Model 2 - four variables:
m2 <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,
           data = wine,
           trControl = tc,
           method = "glm",
           family = "binomial")
```

To compare the models, we use `evalm` to plot ROC and calibration curves:

```r
library(MLeval)
plots <- evalm(list(m, m2),
               gnames = c("Model 1", "Model 2"))

# ROC:
plots$roc

# Calibration curves:
plots$cc
```

Model 2 performs much better, both in terms of AUC and calibration. Adding two more variables has both increased the predictive performance of the model (a much higher AUC) and lead to a better-calibrated model.
Exercise 9.9

First, we load and clean the data:

```r
library(openxlsx)
estates <- read.xlsx(file_path)estates <- na.omit(estates)
```

Next, we fit a ridge regression model and evaluate it with LOOCV using `caret` and `train`:

```r
library(caret)
tc <- trainControl(method = "LOOCV")m <- train(selling_price ~ ., data = estates,
           method = "glmnet",
           tuneGrid = expand.grid(alpha = 0,
                                   lambda = seq(0, 10, 0.1)),
           trControl = tc)

# Results for the best model:
m$results[which(m$results$lambda == m$finalModel$lambdaOpt),]
```

Noticing that the \(\lambda \) that gave the best \(RMSE \) was 10, which was the maximal \(\lambda \) that we investigated, we rerun the code, allowing for higher values of \(\lambda \):

```r
m <- train(selling_price ~ ., data = estates,
           method = "glmnet",
           tuneGrid = expand.grid(alpha = 0,
                                   lambda = seq(10, 120, 1)),
           trControl = tc)

# Results for the best model:
m$results[which(m$results$lambda == m$finalModel$lambdaOpt),]
```

The \(RMSE \) is 549 and the \(MAE \) is 399. In this case, ridge regression did not improve the performance of the model compared to an ordinary linear regression.

Exercise 9.10

We load and format the data as in the beginning of Section 9.1.7.

1. We can now fit the models using `train`, making sure to add `family = "binomial"`:

```r
library(caret)
tc <- trainControl(method = "cv",
```
number = 10,
savePredictions = TRUE,
classProbs = TRUE)
m1 <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,
 data = wine,
 method = "glmnet",
 family = "binomial",
 tuneGrid = expand.grid(alpha = 0,
 lambda = seq(0, 10, 0.1)),
 trControl = tc)

m1

The best value for \(\lambda \) is 0, meaning that no regularisation is used.

2. Next, we add `summaryFunction = twoClassSummary` and `metric = "ROC"`, which means that AUC and not accuracy will be used to find the optimal \(\lambda \):

```r
tc <- trainControl(method = "cv",
                   number = 10,
                   summaryFunction = twoClassSummary,
                   savePredictions = TRUE,
                   classProbs = TRUE)
m2 <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,
             data = wine,
             method = "glmnet",
             family = "binomial",
             tuneGrid = expand.grid(alpha = 0,
                                    lambda = seq(0, 10, 0.1)),
             metric = "ROC",
             trControl = tc)
```

m2

The best value for \(\lambda \) is still 0. For this dataset, both accuracy and AUC happened to give the same \(\lambda \), but that isn’t always the case.

Exercise 9.11

First, we load and clean the data:

```r
library(openxlsx)
estates <- read.xlsx(file_path)
estates <- na.omit(estates)
```

Next, we fit a lasso model and evaluate it with LOOCV using `caret` and `train`:
library(caret)
tc <- trainControl(method = "LOOCV")
m <- train(selling_price ~ .,
 data = estates,
 method = "glmnet",
 tuneGrid = expand.grid(alpha = 1,
 lambda = seq(0, 10, 0.1)),
 trControl = tc)

Results for the best model:
m$results[which(m$results$lambda == m$finalModel$lambdaOpt),]

The RMSE is 545 and the MAE is 394. Both are a little lower than for the ordinary linear regression, but the difference is small in this case. To see which variables have been removed, we can use:

\[\text{coef}(m$finalModel, m$finalModel$lambdaOpt) \]

Note that this data isn’t perfectly suited to the lasso, because most variables are useful in explaining the selling price. Where the lasso really shines in problems where a lot of the variables, perhaps even most, aren’t useful in explaining the response variable. We’ll see an example of that in the next exercise.

Exercise 9.12

1. We try fitting a linear model to the data:

\[m <- \text{lm}(y ~ ., \text{data} = \text{simulated_data}) \]

\[\text{summary}(m) \]

There are no error messages, but \texttt{summary} reveals that there were problems: \texttt{Coefficients: (101 not defined because of singularities)} and for half the variables we don’t get estimates of the coefficients. It is not possible to fit ordinary linear models when there are more variables than observations (there is no unique solution to the least squares equations from which we obtain the coefficient estimates), which leads to this strange-looking output.

2. Lasso models can be used even when the number of variables is greater than the number of observations - regularisation ensures that there will be a unique solution. We fit a lasso model using \texttt{caret} and \texttt{train}:

\[\text{library(caret)} \]
\[\text{tc} <- \text{trainControl(method = "LOOCV")} \]
\[m <- \text{train}(y ~ ., \text{data} = \text{simulated_data}, \text{method} = "glmnet", \text{trControl} = \text{tc}) \]
Next, we have a look at what variables have non-zero coefficients:

```r
tunegrid = expand.grid(alpha = 1, lambda = seq(0, 10, 0.1)),
trControl = tc)
```

Your mileage may vary (try running the simulation more than once!), but it is likely that the lasso will have picked at least the first four of the explanatory variables, probably along with some additional variables. Try changing the ratio between \(n \) and \(p \) in your experiment, or the size of the coefficients used when generating \(y \), and see what happens.

Exercise 9.13

First, we load and clean the data:

```r
library(openxlsx)
estates <- read.xlsx(file_path)
estates <- na.omit(estates)
```

Next, we fit an elastic net model and evaluate it with LOOCV using `caret` and `train`:

```r
tc <- trainControl(method = "LOOCV")
m <- train(selling_price ~ ., data = estates,
  method = "glmnet",
  tuneGrid = expand.grid(alpha = seq(0, 1, 0.2),
                        lambda = seq(10, 20, 1)),
  trControl = tc)

# Print best choices of alpha and lambda:
m$bestTune

# Print the RMSE and MAE for the best model:
m$results[which(rownames(m$results) == rownames(m$bestTune))]
```

We get a slight improvement over the lasso, with an RMSE of 543.5 and an MAE of 393.
Exercise 9.14

We load and format the data as in the beginning of Section 9.1.7. We can then fit the model using train. We set summaryFunction = twoClassSummary and metric = "ROC" to use AUC to find the optimal k.

```r
library(caret)
tc <- trainControl(method = "repeatedcv",
                    number = 10, repeats = 100,
                    summaryFunction = twoClassSummary,
                    savePredictions = TRUE,
                    classProbs = TRUE)

m <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,  
            data = wine,  
            trControl = tc,  
            method = "rpart",  
            metric = "ROC",  
            tuneGrid = expand.grid(cp = 0))

m
```

1. Next, we plot the resulting decision tree:

```r
library(rpart.plot)
prp(m$finalModel)
```

The tree is pretty large. The parameter cp, called a complexity parameter, can be used to prune the tree, i.e. to make it smaller. Let’s try setting a larger value for cp:

```r
m <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,  
            data = wine,  
            trControl = tc,  
            method = "rpart",  
            metric = "ROC",  
            tuneGrid = expand.grid(cp = 0.1))

prp(m$finalModel)
```

That was way too much pruning - now the tree is too small! Try a value somewhere in-between:

```r
m <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,  
            data = wine,  
            trControl = tc,  
            method = "rpart",  
            metric = "ROC",  
            tuneGrid = expand.grid(cp = 0.01))
```
That seems like a good compromise. The tree is small enough for us to understand and discuss, but hopefully large enough that it still has a high AUC.

2. For presentation and interpretability purposes we can experiment with manually setting different values of cp. We can also let `train` find an optimal value of cp for us, maximising for instance the AUC. We’ll use `tuneGrid = expand.grid(cp = seq(0, 0.01, 0.001))` to find a good choice of cp somewhere between 0 and 0.01:

```r
m <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,
            data = wine,
            trControl = tc,
            method = "rpart",
            metric = "ROC",
            tuneGrid = expand.grid(cp = seq(0, 0.01, 0.001)))
```

In some cases, increasing cp can increase the AUC, but not here - a cp of 0 turns out to be optimal in this instance.

Finally, to visually evaluate the model, we use `evalm` to plot ROC and calibration curves:

```r
library(MLeval)
plots <- evalm(m, gnames = "Decision tree")

# ROC:
plots$roc

# 95 % Confidence interval for AUC:
plots$optres[[1]][13,]

# Calibration curves:
plots$cc
```

Exercise 9.15

We set `file_path` to the path of `bacteria.csv`, then load and format the data as in Section 9.3.3:

```r
bacteria <- read.csv(file_path)
bacteria$Time <- as.POSIXct(bacteria$Time, format = "%H:%M:%S")
```

Next, we fit a regression tree model using rows 45 to 90:
Finally, we make predictions for the entire dataset and compare the results to the actual outcomes:

```r
bacteria$Predicted <- predict(m, bacteria)
```

Regression trees are unable to extrapolate beyond the training data. By design, they will make constant predictions whenever the values of the explanatory variables go beyond those in the training data. Bear this in mind if you use tree-based models for predictions!

Exercise 9.16

First, we load the data as in Section 4.9:

```r
# The data is downloaded from the UCI Machine Learning Repository:
# http://archive.ics.uci.edu/ml/datasets/seeds
seeds <- read.table("https://tinyurl.com/seedsdata",
                   col.names = c("Area", "Perimeter", "Compactness",
                                 "Kernel_length", "Kernel_width", "Asymmetry",
                                 "Groove_length", "Variety"))
seeds$Variety <- factor(seeds$Variety)
```

Next, we fit a classification tree model with `Kernel_length` and `Compactness` as explanatory variables:

```r
library(caret)
tc <- trainControl(method = "LOOCV")

m <- train(Variety ~ Kernel_length + Compactness,
           data = seeds,
           trControl = tc,
           method = "rpart",
           tuneGrid = expand.grid(cp = 0))
```
Finally, we plot the decision boundaries:

```r
tuneGrid = expand.grid(cp = 0)
```

```r
contour_data <- expand.grid(  
  Kernel_length = seq(min(seeds$Kernel_length), max(seeds$Kernel_length), length = 500),  
  Compactness = seq(min(seeds$Compactness), max(seeds$Compactness), length = 500))
```

```r
predictions <- data.frame(contour_data,  
  Variety = as.numeric(predict(m, contour_data)))
```

```r
library(ggplot2)
ggplot(seeds, aes(Kernel_length, Compactness, colour = Variety)) +  
  geom_point(size = 2) +  
  stat_contour(aes(x = Kernel_length, y = Compactness, z = Variety),  
               data = predictions, colour = "black")
```

The decision boundaries seem pretty good - most points in the lower left part belong to variety 3, most in the middle to variety 1, and most to the right to variety 2.

Exercise 9.17

We load and format the data as in the beginning of Section 9.1.7. We can then fit the models using `train` (fitting m2 takes a while):

```r
library(caret)
tc <- trainControl(method = "cv",  
                   number = 10,  
                   summaryFunction = twoClassSummary,  
                   savePredictions = TRUE,  
                   classProbs = TRUE)
```

```r
m1 <- train(type ~ .,  
            data = wine,  
            trControl = tc,  
            method = "rpart",  
            metric = "ROC",  
            tuneGrid = expand.grid(cp = c(0, 0.1, 0.01)))
```

```r
m2 <- train(type ~ .,  
            data = wine,  
            trControl = tc,  
            method = "rf",  
            metric = "ROC",  
            tuneGrid = expand.grid(mtry = 2:6))
```
Next, we compare the results of the best models:

m1
m2

And finally, a visual comparison:

```r
library(MLeval)
plots <- evalm(list(m1, m2),
               gnames = c("Decision tree", "Random forest"))

# ROC:
plots$roc

# Calibration curves:
plots$cc
```

The calibration curves may look worrisome, but the main reason that they deviate from the straight line is that almost all observations have predicted probabilities close to either 0 or 1. To see this, we can have a quick look at the histogram of the predicted probabilities that the wines are white:

```r
hist(predict(m2, type = "prob"), 2]
```

We used 10-fold cross-validation here, as using repeated cross-validation would take too long (at least in this case, where we only study this data as an example). As we've seen before, that means that the performance metrics can vary a lot between runs, so we shouldn’t read too much into the difference we found here.

Exercise 9.18

We set `file_path` to the path of `bacteria.csv`, then load and format the data as in Section 9.3.3:

```r
bacteria <- read.csv(file_path)
bacteria$Time <- as.POSIXct(bacteria$Time, format = "%H:%M:%S")
```

Next, we fit a random forest using rows 45 to 90:

```r
library(caret)
tc <- trainControl(method = "LOOCV")
m <- train(OD ~ Time,
         data = bacteria[45:90,],
         trControl = tc,
         method = "rf",
         tuneGrid = expand.grid(mtry = 1))
```
Finally, we make predictions for the entire dataset and compare the results to the actual outcomes:

```r
bacteria$Predicted <- predict(m, bacteria)
library(ggplot2)
ggplot(bacteria, aes(Time, OD)) +
geom_line() +
geom_line(aes(Time, Predicted), colour = "red")
```

The model does very well for the training data, but fails to extrapolate beyond it. Because random forests are based on decision trees, they give constant predictions whenever the values of the explanatory variables go beyond those in the training data.

Exercise 9.19

First, we load the data as in Section 4.9:

```r
# The data is downloaded from the UCI Machine Learning Repository:
# http://archive.ics.uci.edu/ml/datasets/seeds
seeds <- read.table("https://tinyurl.com/seedsdata",
  col.names = c("Area", "Perimeter", "Compactness",
  "Kernel_length", "Kernel_width", "Asymmetry",
  "Groove_length", "Variety"))
seeds$Variety <- factor(seeds$Variety)
```

Next, we fit a random forest model with `Kernel_length` and `Compactness` as explanatory variables:

```r
library(caret)
tc <- trainControl(method = "LOOCV")

m <- train(Variety ~ Kernel_length + Compactness,
  data = seeds,
  trControl = tc,
  method = "rf",
  tuneGrid = expand.grid(mtry = 1:2))
```

Finally, we plot the decision boundaries:

```r
contour_data <- expand.grid(
  Kernel_length = seq(min(seeds$Kernel_length), max(seeds$Kernel_length), length = 500),
  Compactness = seq(min(seeds$Compactness), max(seeds$Compactness), length = 500))
predictions <- data.frame(contour_data,
                          Variety = as.numeric(predict(m, contour_data)))
```
library(ggplot2)
ggplot(seeds, aes(Kernel_length, Compactness, colour = Variety)) +
 geom_point(size = 2) +
 stat_contour(aes(x = Kernel_length, y = Compactness, z = Variety),
 data = predictions, colour = "black")

The decision boundaries are much more complex and flexible than those for the
decision tree of Exercise 9.16. Perhaps they are too flexible, and the model has
overfitted to the training data?

Exercise 9.20

We load and format the data as in the beginning of Section 9.1.7. We can then fit
the model using train. Try a large number of parameter values to see if you can get
a high AUC. You can try using a simple 10-fold cross-validation to find reasonable
candidate values for the parameters, and then rerun the tuning with a replicated
10-fold cross-validation with parameter values close to those that were optimal in
your first search.

library(caret)
tc <- trainControl(method = "cv",
 number = 10,
 summaryFunction = twoClassSummary,
 savePredictions = TRUE,
 classProbs = TRUE)
m <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,
 data = wine,
 trControl = tc,
 method = "gbm",
 metric = "ROC",
 tuneGrid = expand.grid(
 interaction.depth = 1:5,
 n.trees = seq(20, 200, 20),
 shrinkage = seq(0.01, 0.1, 0.01),
 n.minobsinnode = c(10, 20, 30)),
 verbose = FALSE)

ggplot(m)

Exercise 9.21

We set file_path to the path of bacteria.csv, then load and format the data as
in Section 9.3.3:
Next, we fit a boosted trees model using rows 45 to 90:

```r
library(caret)
tc <- trainControl(method = "LOOCV")
m <- train(OD ~ Time,
  data = bacteria[45:90,],
  trControl = tc,
  method = "gbm")
```

Finally, we make predictions for the entire dataset and compare the results to the actual outcomes:

```r
bacteria$Predicted <- predict(m, bacteria)

library(ggplot2)
ggplot(bacteria, aes(Time, OD)) +
  geom_line() +
  geom_line(aes(Time, Predicted), colour = "red")
```

The model does OK for the training data, but fails to extrapolate beyond it. Because boosted trees models are based on decision trees, they give constant predictions whenever the values of the explanatory variables go beyond those in the training data.

Exercise 9.22

First, we load the data as in Section 4.9:

```r
# The data is downloaded from the UCI Machine Learning Repository:
# http://archive.ics.uci.edu/ml/datasets/seeds
seeds <- read.table("https://tinyurl.com/seedsdata",
  col.names = c("Area", "Perimeter", "Compactness",
  "Kernel_length", "Kernel_width", "Asymmetry",
  "Groove_length", "Variety"))
seeds$Variety <- factor(seeds$Variety)
```

Next, we fit a boosted trees model with `Kernel_length` and `Compactness` as explanatory variables:

```r
library(caret)
tc <- trainControl(method = "LOOCV")
m <- train(Variety ~ Kernel_length + Compactness,
```
Finally, we plot the decision boundaries:

```r
contour_data <- expand.grid(
  Kernel_length = seq(min(seeds$Kernel_length), max(seeds$Kernel_length), length = 500),
  Compactness = seq(min(seeds$Compactness), max(seeds$Compactness), length = 500))
predictions <- data.frame(contour_data,
  Variety = as.numeric(predict(m, contour_data)))
library(ggplot2)
ggplot(seeds, aes(Kernel_length, Compactness, colour = Variety)) +
  geom_point(size = 2) +
  stat_contour(aes(x = Kernel_length, y = Compactness, z = Variety),
               data = predictions, colour = "black")
```

The decision boundaries are much complex and flexible than those for the decision tree of Exercise 9.16, but does not appear to have overfitted like the random forest in Exercise 9.19.

Exercise 9.23

1. We set `file_path` to the path of `bacteria.csv`, then load and format the data as in Section 9.3.3:

```r
bacteria <- read.csv(file_path)
bacteria$Time <- as.numeric(as.POSIXct(bacteria$Time, format = "%H:%M:%S"))
```

First, we fit a decision tree using rows 45 to 90:

```r
library(caret)
tc <- trainControl(method = "LOOCV")

m <- train(OD ~ Time,
  data = bacteria[45:90,],
  trControl = tc,
  method = "rpart",
  tuneGrid = expand.grid(cp = 0))
```

Next, we fit a model tree using rows 45 to 90. The only explanatory variable available to us is `Time`, and we want to use that both for the models in the nodes and for the splits:
library(partykit)
m2 <- lmtree(OD ~ Time | Time, data = bacteria[45:90,])

library(ggparty)
autoplot(m2)

Next, we make predictions for the entire dataset and compare the results to the actual outcomes. We plot the predictions from the decision tree in red and those from the model tree in blue:

bacteria$Predicted_dt <- predict(m, bacteria)
bacteria$Predicted_mt <- predict(m2, bacteria)

library(ggplot2)
ggplot(bacteria, aes(Time, OD)) +
 geom_line() +
 geom_line(aes(Time, Predicted_dt), colour = "red") +
 geom_line(aes(Time, Predicted_mt), colour = "blue")

Neither model does particularly well (but fail in different ways).

2. Next, we repeat the same steps, but use observations 20 to 120 for fitting the models:

m <- train(OD ~ Time,
 data = bacteria[20:120,],
 trControl = tc,
 method = "rpart",
 tuneGrid = expand.grid(cp = 0))

m2 <- lmtree(OD ~ Time | Time, data = bacteria[20:120,])

autoplot(m2)

bacteria$Predicted_dt <- predict(m, bacteria)
bacteria$Predicted_mt <- predict(m2, bacteria)

library(ggplot2)
ggplot(bacteria, aes(Time, OD)) +
 geom_line() +
 geom_line(aes(Time, Predicted_dt), colour = "red") +
 geom_line(aes(Time, Predicted_mt), colour = "blue")

As we can see from the plot of the model tree, it (correctly!) identifies different time phases in which the bacteria grow at different speeds. It therefore also managed to make better extrapolation than the decision tree, which predicts no growth as Time
is increased beyond what was seen in the training data.

Exercise 9.24

We load and format the data as in the beginning of Section 9.1.7. We can then fit the model using `train` as follows:

```r
library(caret)
tc <- trainControl(method = "repeatedcv",
                   number = 10, repeats = 100,
                   summaryFunction = twoClassSummary,
                   savePredictions = TRUE,
                   classProbs = TRUE)

m <- train(type ~ .,
           data = wine,
           trControl = tc,
           method = "qda",
           metric = "ROC")

m
```

To round things off, we evaluate the model using `evalm`:

```r
library(MLeval)
plots <- evalm(m, gnames = "QDA")

# ROC:
plots$roc

# 95 % Confidence interval for AUC:
plots$optres[[1]][13],

# Calibration curves:
plots$cc
```

Exercise 9.25

First, we load the data as in Section 4.9:

```r
# The data is downloaded from the UCI Machine Learning Repository:
# http://archive.ics.uci.edu/ml/datasets/seeds
seeds <- read.table("https://tinyurl.com/seedsdata",
                   col.names = c("Area", "Perimeter", "Compactness",
                                  "Kernel_length", "Kernel_width", "Asymmetry",
                                  "Groove_length", "Variety"))
```
Next, we fit LDA and QDA models with Kernel_length and Compactness as explanatory variables:

```r
library(caret)
tc <- trainControl(method = "LOOCV")
m1 <- train(Variety ~ Kernel_length + Compactness,
            data = seeds,
            trControl = tc,
            method = "lda")
m2 <- train(Variety ~ Kernel_length + Compactness,
            data = seeds,
            trControl = tc,
            method = "qda")
```

Next, we plot the decision boundaries in the same scatterplot (LDA is black and QDA is orange):

```r
contour_data <- expand.grid(
    Kernel_length = seq(min(seeds$Kernel_length), max(seeds$Kernel_length), length = 500),
    Compactness = seq(min(seeds$Compactness), max(seeds$Compactness), length = 500))
predictions1 <- data.frame(contour_data,
                           Variety = as.numeric(predict(m1, contour_data)))
predictions2 <- data.frame(contour_data,
                           Variety = as.numeric(predict(m2, contour_data)))
library(ggplot2)
ggplot(seeds, aes(Kernel_length, Compactness, colour = Variety)) +
  geom_point(size = 2) +
  stat_contour(aes(x = Kernel_length, y = Compactness, z = Variety),
               data = predictions1, colour = "black") +
  stat_contour(aes(x = Kernel_length, y = Compactness, z = Variety),
               data = predictions2, colour = "orange")
```

The decision boundaries are fairly similar and seem pretty reasonable. QDA offers more flexible non-linear boundaries, but the difference isn’t huge.

Exercise 9.26

First, we load the data as in Section 4.9:
The data is downloaded from the UCI Machine Learning Repository:
http://archive.ics.uci.edu/ml/datasets/seeds
seeds <- read.table("https://tinyurl.com/seedsdata",
col.names = c("Area", "Perimeter", "Compactness",
"Kernel_length", "Kernel_width", "Asymmetry",
"Groove_length", "Variety"))
seeds$Variety <- factor(seeds$Variety)

Next, we fit the MDA model with Kernel_length and Compactness as explanatory variables:

```r
library(caret)
tc <- trainControl(method = "LOOCV")
m <- train(Variety ~ Kernel_length + Compactness,
data = seeds,
trControl = tc,
method = "mda")
```

Finally, we plot the decision boundaries:

```r
contour_data <- expand.grid(
    Kernel_length = seq(min(seeds$Kernel_length), max(seeds$Kernel_length), length = 500),
    Compactness = seq(min(seeds$Compactness), max(seeds$Compactness), length = 500))
predictions <- data.frame(contour_data,
    Variety = as.numeric(predict(m, contour_data)))

library(ggplot2)
ggplot(seeds, aes(Kernel_length, Compactness, colour = Variety)) +
geom_point(size = 2) +
stat_contour(aes(x = Kernel_length, y = Compactness, z = Variety),
data = predictions, colour = "black")
```

The decision boundaries are similar to those of QDA.

Exercise 9.27

We load and format the data as in the beginning of Section 9.1.7. We’ll go with a polynomial kernel and compare polynomials of degree 2 and 3. We can fit the model using train as follows:

```r
library(caret)
tc <- trainControl(method = "cv",
    number = 10,
summaryFunction = twoClassSummary,
```
savePredictions = TRUE,
classProbs = TRUE)

m <- train(type ~ .,
 data = wine,
 trControl = tc,
 method = "svmPoly",
 tuneGrid = expand.grid(C = 1,
 degree = 2:3,
 scale = 1),
 metric = "ROC")

And, as usual, we can then plot ROC and calibration curves:

library(MLeval)
plots <- evalm(m, gnames = "SVM poly")

ROC:
plots$roc

95 % Confidence interval for AUC:
plots$optres[[1]][13,]

Calibration curves:
plots$cc

Exercise 9.28

1. We set file_path to the path of bacteria.csv, then load and format the data as in Section 9.3.3:

bacteria <- read.csv(file_path)
bacteria$Time <- as.POSIXct(bacteria$Time, format = "%H:%M:%S")

Next, we fit an SVM with a polynomial kernel using rows 45 to 90:

library(caret)
tc <- trainControl(method = "LOOCV")

m <- train(OD ~ Time,
 data = bacteria[45:90,],
 trControl = tc,
 method = "svmPoly")

Finally, we make predictions for the entire dataset and compare the results to the actual outcomes:
bacteria$Predicted <- predict(m, bacteria)

library(ggplot2)
ggplot(bacteria, aes(Time, OD)) +
 geom_line() +
 geom_line(aes(Time, Predicted), colour = "red")

Similar to the linear model in Section 9.3.3, the SVM model does not extrapolate too well outside the training data. Unlike tree-based models, however, it does not yield constant predictions for values of the explanatory variable that are outside the range in the training data. Instead, the fitted function is assumed to follow the same shape as in the training data.

2. Next, we repeat the same steps using the data from rows 20 to 120:

library(caret)
tc <- trainControl(method = "LOOCV")
m <- train(OD ~ Time,
 data = bacteria[20:120],
 trControl = tc,
 method = "svmPoly")
bacteria$Predicted <- predict(m, bacteria)

ggplot(bacteria, aes(Time, OD)) +
 geom_line() +
 geom_line(aes(Time, Predicted), colour = "red")

The results are disappointing. Using a different kernel could improve the results though, so go ahead and give that a try!

Exercise 9.29

First, we load the data as in Section 4.9:

The data is downloaded from the UCI Machine Learning Repository:
http://archive.ics.uci.edu/ml/datasets/seeds
seeds <- read.table("https://tinyurl.com/seedsdata",
 col.names = c("Area", "Perimeter", "Compactness",
 "Kernel_length", "Kernel_width", "Asymmetry",
 "Groove_length", "Variety"))
seeds$Variety <- factor(seeds$Variety)

Next, we two different SVM models with Kernel_length and Compactness as explanatory variables:
library(caret)
tc <- trainControl(method = "cv",
 number = 10)

m1 <- train(Variety ~ Kernel_length + Compactness,
data = seeds,
trControl = tc,
method = "svmPoly")

m2 <- train(Variety ~ Kernel_length + Compactness,
data = seeds,
trControl = tc,
method = "svmRadialCost")

Next, we plot the decision boundaries in the same scatterplot (the polynomial kernel is black and the radial basis kernel is orange):

conver_data <- expand.grid(
 Kernel_length = seq(min(seeds$Kernel_length), max(seeds$Kernel_length), length = 500),
 Compactness = seq(min(seeds$Compactness), max(seeds$Compactness), length = 500))
predictions1 <- data.frame(conver_data,
 Variety = as.numeric(predict(m1, conver_data)))
predictions2 <- data.frame(conver_data,
 Variety = as.numeric(predict(m2, conver_data)))

library(ggplot2)
ggplot(seeds, aes(Kernel_length, Compactness, colour = Variety)) +
 geom_point(size = 2) +
 stat_contour(aes(x = Kernel_length, y = Compactness, z = Variety),
 data = predictions1, colour = "black") +
 stat_contour(aes(x = Kernel_length, y = Compactness, z = Variety),
 data = predictions2, colour = "orange")

It is likely the case that the polynomial kernel gives a similar results to e.g. MDA, whereas the radial basis kernel gives more flexible decision boundaries.

Exercise 9.30

We load and format the data as in the beginning of Section 9.1.7. We can then fit the model using train. We set summaryFunction = twoClassSummary and metric = "ROC" to use AUC to find the optimal k. We make sure to add a preProcess argument to train, to standardise the data:
library(caret)
tc <- trainControl(method = "cv",
 number = 10,
 summaryFunction = twoClassSummary,
 savePredictions = TRUE,
 classProbs = TRUE)

m <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,
 data = wine,
 trControl = tc,
 method = "knn",
 metric = "ROC",
 tuneLength = 15,
 preProcess = c("center","scale"))

To visually evaluate the model, we use evalm to plot ROC and calibration curves:
library(MLeval)
plots <- evalm(m, gnames = "kNN")

ROC:
plots$roc

95% Confidence interval for AUC:
plots$optres[[1]][13]

Calibration curves:
plots$cc

The performance is as good as, or a little better than, the best logistic regression model from Exercise 9.5. We shouldn’t make too much of any differences though, as the models were evaluated in different ways - we used repeated 10-fold cross-validation for the logistics models and a simple 10-fold cross-validation here (because repeated cross-validation would be too slow in this case).

Exercise 9.31

First, we load the data as in Section 4.9:

```
# The data is downloaded from the UCI Machine Learning Repository:
# http://archive.ics.uci.edu/ml/datasets/seeds
seeds <- read.table("https://tinyurl.com/seedsdata",
                     col.names = c("Area", "Perimeter", "Compactness","
Next, we two different kNN models with `Kernel_length` and `Compactness` as explanatory variables:

```r
library(caret)
tc <- trainControl(method = "LOOCV")

m <- train(Variety ~ Kernel_length + Compactness,
 data = seeds,
 trControl = tc,
 method = "knn",
 tuneLength = 15,
 preProcess = c("center","scale"))
```

Next, we plot the decision boundaries:

```r
contour_data <- expand.grid(
 Kernel_length = seq(min(seeds$Kernel_length), max(seeds$Kernel_length), length = 500),
 Compactness = seq(min(seeds$Compactness), max(seeds$Compactness), length = 500))

predictions <- data.frame(contour_data,
 Variety = as.numeric(predict(m, contour_data)))

library(ggplot2)
ggplot(seeds, aes(Kernel_length, Compactness, colour = Variety)) +
 geom_point(size = 2) +
 stat_contour(aes(x = Kernel_length, y = Compactness, z = Variety),
 data = predictions, colour = "black")
```

The decision boundaries are quite “wiggly”, which will always be the case when there are enough points in the sample.

**Exercise 9.32**

We start by plotting the time series:

```r
library(forecast)
library(fma)

autoplot(writing) +
 ylab("Sales (francs)") +
 ggtitle("Sales of printing and writing paper")
```
Next, we fit an ARIMA model after removing the seasonal component:

```r
tsmod <- stlm(writing, s.window = "periodic",
 modelfunction = auto.arima)
```

The residuals look pretty good for this model:

```r
checkresiduals(tsmod)
```

Finally, we make a forecast for the next 36 months, adding the seasonal component back and using bootstrap prediction intervals:

```r
autoplot(forecast(tsmod, h = 36, bootstrap = TRUE))
```
Bibliography

Further reading

Below is a list of some highly recommended books that either partially overlap with the content in this book or serve as a natural next step after you finish reading this book. All of these are available for free online.

- *R for Data Science* (https://r4ds.had.co.nz/) by Wickham & Grolemund (2017) is similar in scope to Chapters 2-6 of this book, but with less focus on statistics and greater focus on tidyverse functions.
- *Advanced R* (http://adv-r.had.co.nz/) by Wickham (2019) deals with advanced R topics, delving further into object-oriented programming, functions, and increasing the performance of your code.
- *R Packages* (https://r-pkgs.org/) by Wickham and Bryan describes how to create your own R packages.
- *An Introduction to Statistical Learning with Applications in R* (https://www.statlearning.com/) by James et al. (2013) provides an introduction to methods for regression and classification, with examples in R (but not using caret).

Online resources

• A number of reference cards and cheat sheets can be found online. I like the one at https://cran.r-project.org/doc/contrib/Short-refcard.pdf
• R-bloggers (https://www.r-bloggers.com/) collects blog posts related to R. A great place to discover new tricks and see how others are using R.
• RSeek (http://rseek.org/) provides a custom Google search with the aim of only returning pages related to R.
• Stack Overflow (https://stackoverflow.com/questions/tagged/r) and its sister-site Cross Validated (https://stats.stackexchange.com/) are questions-and-answers sites. They are great places for asking questions, and in addition, they already contain a ton of useful information about all things R-related. The RStudio Community (https://community.rstudio.com/) is another good option.
• The R Journal (https://journal.r-project.org/) is an open-access peer-reviewed journal containing papers on R, mainly describing new add-on packages and their functionality.

References


James, G., Witten, D., Hastie, T., Tibshirani, R. (2013). *An Introduction to Statistical Learning with Applications in R*. Springer.


Index

$R^2$, 356
| >, 81
|, 65
||, 219
+*, 33, 425
->, 27
..., 213
.N, 179
::, 214
;, 30
<=, 26
<<-, 210
?, 34
AIC, 356
Anova, 312
BIC, 356
BiocManager, 409
Boot, 306
Date, 168
EnvStats, 346
GGally, 116
GPArotation, 139
Gompertz2, 344
Hmisc, 338
Hotelling, 263
I, 298
Lognorm2, 344
MKinfer, 260
MKpower, 264
MLEval, 366
MatchIt, 350
Matrix, 416
Mclust, 137
NA, 38
remove, 40
POSIXct, 58, 168
R.Version, 293
Rcpp, 418
Surv, 337
Sys.getlocale, 169
Sys.setlocale, 170
Sys.sleep, 227
Sys.time(), 35
TRUE/FALSE, 58
TukeyHSD, 312
VIF, 301
VarCorr, 330
weibull2, 344
***, 404
#, 29
$, 39
%*%, 417
%<>%, 215
%>, 78
%T>%, 216
%$%, 215
%%, 35
%between%, 183
%in%, 64
%like%, 184
%o%, 417
&&, 219
INDEX

& 65
~, 297
-., 234
abline, 100
abs, 35
across, 179
addNA, 157
add, 80
aes, 42
  alpha, 46
colour, 45
fill, 54
shape, 119
size, 119
text, 103
x, 42
y, 42
affyio, 409
aggregate, 76
agnes, 128
all.equal, 155
all, 65
annotate, 109
anova, 320
anti_join, 200
any, 65
aovp, 313
aov, 311
apply, 232
arrange, 189
as.Date, 168
as.character, 148
as.data.frame, 60
as.dendrogram, 130
as.logical, 148
as.matrix, 60
as.numeric, 148
augment, 308
auto.arima, 401
autoplot, 108
barplot, 52
base, 214
beepr, 228
beep, 228
bench, 241
between, 183
bind_cols, 196
bind_rows, 196
binomCI, 268
binomDiffCI, 270
biplot, 127
bookstore, 31
boot.ci, 286
boot_pval, 290
boot.t.test, 261
bootMer, 332
boot_summary, 306
bootkm, 338
boot, 285
boxcox, 303
boxplot, 48
break, 231
brewer_pal, 132
broom.mixed, 331
broom, 307
by, 76
caret, 360
car, 301
cat, 160
cbind, 196
celling, 151
censboot_summary, 339
censboot, 340
changepoint, 113
character, 58
chisq.test, 268
chol, 417
choose, 35
citation, 293
cluster, 127
coeff, 75
colMeans, 151
colSums, 105, 151
colorRampPalette, 132
colors, 45
compfun, 244
compiler, 244
complex, 58, 448
<table>
<thead>
<tr>
<th>Function</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>confint</td>
<td>304</td>
</tr>
<tr>
<td>contains</td>
<td>187</td>
</tr>
<tr>
<td>cooks.distance</td>
<td>320</td>
</tr>
<tr>
<td>coord_flip</td>
<td>54</td>
</tr>
<tr>
<td>cor.test</td>
<td>267</td>
</tr>
<tr>
<td>cor</td>
<td>34</td>
</tr>
<tr>
<td>by group</td>
<td>77, 178</td>
</tr>
<tr>
<td>cox.zph</td>
<td>340</td>
</tr>
<tr>
<td>coxph</td>
<td>339</td>
</tr>
<tr>
<td>cpt.meanvar</td>
<td>113</td>
</tr>
<tr>
<td>ppt.mean</td>
<td>113</td>
</tr>
<tr>
<td>ppt.var</td>
<td>113</td>
</tr>
<tr>
<td>cummax</td>
<td>152</td>
</tr>
<tr>
<td>cummin</td>
<td>152</td>
</tr>
<tr>
<td>cumprod</td>
<td>152</td>
</tr>
<tr>
<td>cumsum</td>
<td>152</td>
</tr>
<tr>
<td>cut</td>
<td>66</td>
</tr>
<tr>
<td>c</td>
<td>30</td>
</tr>
<tr>
<td>data.frame</td>
<td>31, 59</td>
</tr>
<tr>
<td>data.table</td>
<td>59, 173</td>
</tr>
<tr>
<td>data</td>
<td>39</td>
</tr>
<tr>
<td>dcast</td>
<td>191</td>
</tr>
<tr>
<td>debug</td>
<td>423</td>
</tr>
<tr>
<td>dendextend</td>
<td>130</td>
</tr>
<tr>
<td>desc</td>
<td>189</td>
</tr>
<tr>
<td>detectCores</td>
<td>376, 410</td>
</tr>
<tr>
<td>det</td>
<td>418</td>
</tr>
<tr>
<td>dev.off</td>
<td>54</td>
</tr>
<tr>
<td>devtools</td>
<td>408</td>
</tr>
<tr>
<td>diabetes</td>
<td>343</td>
</tr>
<tr>
<td>diag</td>
<td>414</td>
</tr>
<tr>
<td>diana</td>
<td>129</td>
</tr>
<tr>
<td>difftime</td>
<td>171</td>
</tr>
<tr>
<td>dim</td>
<td>38, 61</td>
</tr>
<tr>
<td>distinct</td>
<td>239</td>
</tr>
<tr>
<td>divide_by</td>
<td>80</td>
</tr>
<tr>
<td>doParallel</td>
<td>376, 409</td>
</tr>
<tr>
<td>dotPlot</td>
<td>373</td>
</tr>
<tr>
<td>double</td>
<td>58</td>
</tr>
<tr>
<td>dplyr</td>
<td>173</td>
</tr>
<tr>
<td>drop_na</td>
<td>183</td>
</tr>
<tr>
<td>droplevels</td>
<td>158</td>
</tr>
<tr>
<td>dtplyr</td>
<td>173</td>
</tr>
<tr>
<td>duplicated</td>
<td>363</td>
</tr>
<tr>
<td>e+</td>
<td>153</td>
</tr>
<tr>
<td>eapply</td>
<td>233</td>
</tr>
<tr>
<td>egammaAltCensored</td>
<td>346</td>
</tr>
<tr>
<td>eigen</td>
<td>417</td>
</tr>
<tr>
<td>element_blank</td>
<td>96</td>
</tr>
<tr>
<td>element_line</td>
<td>96</td>
</tr>
<tr>
<td>element_rect</td>
<td>96</td>
</tr>
<tr>
<td>element_text</td>
<td>96</td>
</tr>
<tr>
<td>elnormAltCensored</td>
<td>346</td>
</tr>
<tr>
<td>else</td>
<td>218</td>
</tr>
<tr>
<td>ends_with</td>
<td>187</td>
</tr>
<tr>
<td>enormCensored</td>
<td>346</td>
</tr>
<tr>
<td>eposisCensored</td>
<td>346</td>
</tr>
<tr>
<td>evalm</td>
<td>366</td>
</tr>
<tr>
<td>exists</td>
<td>220</td>
</tr>
<tr>
<td>expand.grid</td>
<td>369</td>
</tr>
<tr>
<td>exp</td>
<td>35</td>
</tr>
<tr>
<td>extract</td>
<td>80</td>
</tr>
<tr>
<td>fa.diagram</td>
<td>139</td>
</tr>
<tr>
<td>fa.parallel</td>
<td>141</td>
</tr>
<tr>
<td>facet_wrap</td>
<td>47</td>
</tr>
<tr>
<td>factoextra</td>
<td>134, 137</td>
</tr>
<tr>
<td>factorial</td>
<td>35</td>
</tr>
<tr>
<td>factor</td>
<td>58, 156</td>
</tr>
<tr>
<td>add ‘NA’ level</td>
<td>157</td>
</tr>
<tr>
<td>change order of levels</td>
<td>158</td>
</tr>
<tr>
<td>combine levels</td>
<td>158, 177</td>
</tr>
<tr>
<td>drop levels</td>
<td>158</td>
</tr>
<tr>
<td>rename levels</td>
<td>157, 176</td>
</tr>
<tr>
<td>fanny</td>
<td>136</td>
</tr>
<tr>
<td>fa</td>
<td>139</td>
</tr>
<tr>
<td>file.choose</td>
<td>68</td>
</tr>
<tr>
<td>fill</td>
<td>180</td>
</tr>
<tr>
<td>filter</td>
<td>182</td>
</tr>
<tr>
<td>fixef</td>
<td>330</td>
</tr>
<tr>
<td>floor</td>
<td>151</td>
</tr>
<tr>
<td>fma</td>
<td>107</td>
</tr>
<tr>
<td>foreach</td>
<td>376, 409</td>
</tr>
<tr>
<td>forecast</td>
<td>107, 401, 402</td>
</tr>
<tr>
<td>foreign</td>
<td>204</td>
</tr>
<tr>
<td>format</td>
<td>153</td>
</tr>
<tr>
<td>formula</td>
<td>305</td>
</tr>
<tr>
<td>fortify.merMod</td>
<td>331</td>
</tr>
<tr>
<td>for</td>
<td>223</td>
</tr>
</tbody>
</table>
parallel, 409
fpp2, 107
frankv, 183
fread, 174
fromJSON, 204
full_join, 199
function, 208
furrr, 413
future_map, 413
future, 413
fviz_cluster, 135
fviz_dend, 130
fviz_nbclust, 134
ggridges, 98
ggbeeswarm, 242
ggcorr, 118
ggcoxzph, 340
ggfortify, 113
ggplot2, 42
ggplotly, 103
ggplot, 42
ggridges, 98
ggsave, 54
ggseasoneplot, 112
ggtree, 108
ginv, 417
glance, 308
glm.nb, 323
glmer, 335
glmmLasso, 385
glmnet, 379
glimtree, 394
glm, 265, 316
grid, 44
gaub, 166
hcut, 130
head, 38
heatmap, 131
hist, 50
extract breaks/midpoints, 99
hotelling.test, 263
html_nodes, 202
html_table, 203
html_text, 202
ifelse, 104, 220
if, 218
image, 416
imap, 237
inner_join, 198
inset, 79
install.packages, 37
install, 409
integer, 58
interaction.plot, 312
is.character, 149
is.logical, 149
is.na, 64
is.numeric, 149
isTRUE, 155
iwalk, 237
jsonlite, 204
INDEX

julian, 171
kendallSeasonalTrendTest, 349
kendallTrendTest, 349
keras, 419
kmeans, 133
knn, 399
kruskal.test, 313
lapply, 233
lda, 396
left_join, 199
length, 35, 76
levels, 156
library, 37
list.files, 226
list, 149
lmPerm, 304
lme4, 327
lmer, 328
lmp, 304
lmtree, 394
lm, 75, 296
load, 73
logical, 58
log, 35
lower.tri, 415
ls, 203
magrittr, 78
makeCluster, 413
map2, 239
map_chr, 236
map_dbl, 235
map_dfr, 236
map_int, 235
map_lgl, 236
mapply, 233
mark, 241
matchit, 350
match, 99, 159
matlab, 418
matrix, 59, 61, 166, 414
  operations, 416
  sparse, 416
max, 40
mclapply, 413
mclust, 137
mean, 33, 40, 65
  by group, 76, 178
median, 40
melt, 191
merge, 198
min, 40
mob.control, 394
mona, 128
months, 170
multiply_by, 80
n_distinct, 179
na.omit, 183
na.rm, 40
nafill, 180
names, 38, 61, 167
nchar, 167
ncol, 61
ncvTest, 301
next, 231
nlme, 107
nrow, 61, 110
numeric, 58
nycflights13, 106
n, 179
offset, 325
openxlsx, 70
options
  scipen, 153
optmatch, 350
order, 189
p.adjust, 263
packageVersion, 293
pam, 134
parApply, 413
parLapply, 413
parallel, 376, 409
partykit, 393
paste, 160
patchwork, 101
pch, 44
pdf, 54
perm.t.test, 260
perm_mvlogrank, 344
pipe, 215
pivot_wider, 191
pi, 35
plan, 413
plot_ly, 118
plotly, 103
plot, 42
plumber, 403
pmap, 240
png, 54
poLCA, 141
possibly, 238
posterior_interval, 266
power.prop.test, 268
power.t.test, 264
power.welch.t.test, 264
pr_run, 404
prcomp, 125
preProcess, 399
predict, 299, 309
print, 216
prod, 35
proportions, 41
prp, 388
pr, 404
pscl, 323
psych, 139
pull, 186
purrr, 234
pwalk, 240
qr, 417
quantile, 40
quarters, 170
raise_to_power, 80
randomForest, 390
ranef, 330
rank, 159
rapply, 233
raw, 58
rbeta, 250
rbind, 196
rbind2, 251
rchisq, 250
read.csv, 67
read.dta, 204
read.mtp, 204
read.spss, 204
read.table, 124
read.xlsx, 70
read.xport, 204
read_html, 202
recode, 176
recover, 424
registerDoParallel, 376, 410
relaimpo, 374
relocate, 189
remove.packages, 409
rename, 175
reorder, 50
rep, 224
require, 407
reticulate, 418
return, 208
rexp, 249
rf, 250, 390
rgamma, 250
right_join, 199
rle, 152
rlm, 304
rlnorm, 250
rm, 203
rnbinom, 251
rnorm, 249
round, 151
row.names, 61
rowMeans, 151
rowSums, 151
rpart.plot, 388
rpart, 388
rpois, 251
rt, 250
runif, 249
rvest, 202
safely, 238
sample_n, 184
sample, 184, 248
sapply, 233
save.image, 73
INDEX

save, 73
scale_colour_brewer, 95
scale_colour_discrete, 120
scale_size, 120
scale_x_log10, 47
scale, 129, 297
scree, 140
sd, 40
search, 214
select_if, 187
selectorgadget, 203
semi_join, 200
separate, 192
seq.Date, 172
seq_along, 224
seq, 224
set.seed, 248
setTxtProgressBar, 227
set_names, 237
setcolorder, 189
setkey, 198
setnames, 175
setwd, 67
shapiro.test, 254
signif, 151
sim.power.t.test, 280
sim.power.wilcox.test, 280
sim ssize.wilcox.test, 283
sin, 35
slice, 182
solve, 417
sort, 189
source, 215
sparklyr, 419
split, 150
spower, 344
sprintf, 154, 161
sqrt, 35
ssize.propCI, 269
stan_aov, 314
stan_glm, 313
stan_lmer, 336
starts_with, 187
stat_density_2d, 121
stlm, 401
stl, 112, 401
stopCluster, 413
strftime, 170
strsplit, 166
str, 38
subset, 79
substr, 161
subtract, 80
sub, 166
summary, 39, 75, 126
sum, 35, 40, 65
survfit, 337
survival, 337
survminer, 340
survreg, 341
svd, 417
switch, 221
system.time, 241
t.test, 74, 256
tail, 38
tanglegram, 130
tapply, 233
tbl_df, 59
theme_..., 94
theme, 96
tidy, 173
tidy, 307
tolower, 161
top_n, 183
torch, 419
toupper, 161
traceback, 422
trainControl, 360
train, 360
trunc, 151
tstrsplit, 192
txtProgressBar, 227
t, 72, 415
undebug, 424
uniqueN, 179
unique, 71
unite, 193
unlist, 150, 166
upper.tri, 415
use_series, 80
vapply, 233
varImp, 373
var, 40
vector, 224
walk2, 239
walk, 236
weekdays, 170
where, 179
which.max, 64
which.min, 64
which, 65
while, 229
wilcox.test, 266
write.csv, 72
write.xlsx, 72
xgboost, 393
xlab, 45, 46
xlim, 46
xor, 65
ylab, 45, 46
ylim, 46
[ 1], 31
accuracy, 366
aesthetics, 42
AIC, 356
annotate plot, 109
ANOVA, 311
   Kruskal-Wallis test, 313
   mixed model, 333
   permutation test, 313
   post hoc test, 312
API, 403
as.yearqtr, 171
assignment, 26
AUC, 367
   confidence interval, 367
bagging, 389
bar chart, 52
bias-variance decomposition, 378
BIC, 356
boosting, 391
bootstrap, 284
   evaluate predictive model, 364
   inference, 284
   mixed model, 332
   parametric, 290
   prediction interval, 309
boxplot, 48
bubble plot, 119
calibration curve, 367
categorical data, 52
class, 58
classification
   class imbalance, 371
clustering, 127
   k-means, 133
   centroid, 133
dendrogram, 128
distance measure, 128
fuzzy, 136
gap statistic, 135
hierarchical, 128
linkage, 128
model-based, 137
of variables, 131
silhouette plot, 135
WSS, 134
code, 24
Cohen’s kappa, 366
comments, 29
condition, 64
confidence interval
   bootstrap, 284
   difference of proportions, 270
   proportion, 268
   simulate sample size, 283
correlation, 34
   Spearman, 119
correlogram, 118
count occurrences, 76, 122, 179
cross-validation, 359
   k-fold, 362
   LOO, 359
LOOCV, 360
repeated k-fold, 362
cumulative functions, 152
data
estates.xlsx, 361
handkerchiefs.csv, 167
oslo-biomarkers.xlsx, 167
sharks.csv, 317
ucdp-onesided-191.csv, 185
vas-transposed.csv, 71
vas.csv, 71
CAex, 416
Cape_Town_weather, 115
Oxboys, 111
Pastes, 332
TVbo, 333
USArrests, 131
VerbAgg, 334
a10, 107
airports, 197
airquality, 61
attitude, 139
bacteria.csv, 374
cheating, 146
chorSub, 136, 137
contacts, 162
datasaurus_dozen, 77
dogs, 184
elecdaily, 109
flights, 106
gapminder, 123, 190
gold, 108
il2rb.csv, 348
keytars, 203
lalonde, 350
lung, 337
msleep, 38
mtcars, 74, 295
oslo-covariates.xlsx, 201
ovarian, 339, 341
philosophers.csv, 67
planes, 123
quakes, 324
retinopathy, 341
sales-rev.csv, 194
sales-weather.csv, 194
seeds, 124
ships, 325
sleepstudy, 327
smoke, 156
soccer, 385
stockholm, 204
tb_data, 70
upp_temp, 152
votes.repub, 128
weather, 197
wine_imb, 371
wine, 315
writing, 113
export, 72
import from csv, 67
import from database, 204
import from Excel, 70
import from JSON, 204
import from URL, 70
load from .RData, 73
National Mental Health Services
Survey, 142
save to .RData, 73
standardise, 225
data frame, 59
add variable, 63
change variable names, 167
extract vector from, 39
from long to wide, 191
from wide to long, 191
number of rows, 110
select ‘numeric’ variables, 117
transpose/rotate, 72
data type, 58
coercion, 59, 147
hierarchy, 148
date format, 168
decision tree, 387
boosting, 391
model-based, 393
prune, 548
INDEX

pruning, 389
density plot, 98
  2-dimensional, 121
descriptive statistics, 39, 40
distribution, 248
  $\chi^2$, 250
  beta, 250
  binomial, 251
  exponential, 249
  F, 250
  gamma, 250
  lognormal, 250
  negative binomial, 251
  normal, 249
  Poisson, 251
  t, 250
  uniform, 249
documentation, 34
down-sampling, 371

elastic net, 382
element, 30
error message, 56
  (list) object cannot be coerced to type ‘double’, 429
  .Call.graphics... : invalid graphics state, 431
  No such file or directory, 426
  Object of type ‘closure’ is not subsettable, 429
  $ operator is invalid for atomic vectors, 429
  arguments imply differing number of rows, 430
  attempt to apply non-function, 428
  cannot allocate vector of size, 431
  cannot open the connection, 426
  could not find function, 425

missing value where
  TRUE/FALSE needed, 427
non-numeric argument to a binary operator, 430
non-numeric argument to mathematical function, 430
object not found, 425
plot.new() : figure margins too large, 431
replacement has ... rows ..., 431
subscriber out of bounds, 428
undefined columns selected, 428
unexpected ‘=’ in ..., 427

escape character, 159
ethics, 82, 369
  ASA guidelines, 82

facetting, 47
factor analysis, 139
file
  find path, 69
  import data from, 67
filter
  at random, 184
  using conditions, 182
  using regular expressions, 184
  using row numbers, 182
floating point numbers, 154
frequency polygons, 97
function, 33
  ... argument, 213
  arguments/parameters/input, 34
  benchmark, 241
  compile, 244
  default value of argument, 212
  define, 208
  function as argument, 212
  namespace, 214
  operator, 217
  vectorised, 232
functional, 232
INDEX

parallel, 413

generalised linear model
  Bayesian estimation, 326
geoms, 42
 graphics
  save, 54
grouped summaries, 177
grouped summary, 76

heatmap, 131
help file, 34
histogram, 50

hypothesis test
  bootstrap, 284
  chi-squared, 268
  correlation, 267
  independence, 268
  multiple testing, 262
  permutation test, 258
  simulate power, 277
  simulate sample size, 282
  simulate type I error rate, 275
  t-test, 74, 256
  t-test, bootstrap, 261
  t-test, permutation, 260

if statements, 218
import data, 67
imputation, 375
index, 32, 62

infinite loop, see infinite loop

interactive plot, 103
iteration, 223

join, 198
  anti, 200
  full, 199
  inner, 198
  left, 199
  right, 199
  semi, 200
Juliet, 28

key, 197

kNN, 399

lasso, 381
latent class analysis, 141
latent profile analysis, 141
linear discriminant analysis, 395
linear model
  Bayesian estimation, 313
  mixed, 327
linear regression
  centre variables, 297
  confidence interval, 304
  dummy variable, 298
  elastic net, 382
  fit model, 296
  interaction, 297
  lasso, 381
  model diagnostics, 299
  multicollinearity, 301
  permutation test, 304
  plot, 299
  polynomial, 298
  prediction, 309
  prediction interval, 309
  residual, 300
  ridge, 379
  robust, 304
  Tobit, 349
  transformations, 303
  variable selection, 308

list, 149
  collapse to vector, 150
lm.influence, 305
locale, 169
log transform, 47
logical operators, 64
longitudinal data, 109
loop, 223
  for, 223
  while, 229
  nested, 226

MAE, 357
manipulating data, 24
matched samples, 350
mathematical operators, 35
mean, 33
Minitab, 204
missing data, 38
mixed model, 327
  ANOVA, 333
  Bayesian estimation, 336
  bootstrap, 332
  generalised, 334
  nested, 332
  p-value, 330
model tree, 393
MSE, 378
namespace, 214
naming conventions, 28
nearest neighbours classifier, 399
numerical data, 42
offset, 325
oneSE, 383
overplotting, 120
p-hacking, 270
package, 36
  Biconductor, 408
  Github, 408
  installing, 37
  load, 37
  use function from without loading, 214
panel data, 109
path plot, 110
pipe, 78
  inside function, 217
  plot in chain, 216
plot
  choose colour palette, 95
  multiple plots in one graphic, 101
principal component analysis, 124
project, 73
quadratic discriminant analysis, 397
random forest, 389
random variable, 248
regular expression, 161
relative path, 73
reproducibility, 272
ridge regression, 379
RMSE, 356
ROC curve, 366
RStudio, 22
run length, 152
running code, 24
SAS, 204
scatterplot matrix, 116
scientific notation, 153
scripts, 25
  creating new, 25
  running, 25
seasonal plot, 112
sensitivity, 366
simulation, 248
  bias and variance, 273
  power, 277
  sample size, 282
  type I error rate, 275
spaghetti plot, 111
specificity, 366
SPSS, 204
Stata, 204
support vector machines, 397
survival analysis, 337
  accelerated failure time model, 341
  Cox PH regression, 339
  logrank test, 338
  multivariate, 343
  Peto-Peto test, 338
test-training split, 358
tibble, 59
tile plot, 121
time series
  ARIMA, 401
  changepoint, 113
decomposition, 112, 401
plot, 108
tolerance, 384
trend curve, 106
tuning, 379

up-sampling, 371

variable, 26
  add to data frame, 63
  change type, 147
  compute new, 175
  global, 209
  local, 209
  modify, 63, 174
  name, 28, 167
  numeric → categorical, 66
  remove, 175
  remove variable, 203

vector, 30
  split, 150
violin plot, 101
  combine with boxplot, 101

warning message
  NAs introduced by coercion, 433
  longer object length is not a multiple of shorter object length, 432
  number of items to replace..., 432
  package is not available, 433
  the condition has length > 1 and only the first element will be used, 432

working directory, 67