Bibliography

Agresti, A. (2013). Categorical Data Analysis. Wiley.

Bates, D., Mächler, M., Bolker, B., Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1.

Box, G.E., Cox, D.R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211-243.

Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A. (1984). Classification and Regression Trees. CRC press.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Brown, L.D., Cai, T.T., DasGupta, A. (2001). Interval estimation for a binomial proportion. Statistical Science, 16(2), 101-117.

Cameron, A.C., Trivedi, P.K. (1990). Regression-based tests for overdispersion in the Poisson model. Journal of Econometrics, 46(3), 347-364.

Casella, G., Berger, R.L. (2002). Statistical Inference. Brooks/Cole.

Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P.A., Lukasik, S. & Zak, S. (2010). A Complete Gradient Clustering Algorithm for Features Analysis of X-ray Images. In: Information Technologies in Biomedicine, Ewa Pietka, Jacek Kawa (eds.), Springer-Verlag, Berlin-Heidelberg, 15-24.

Chollet, F., Allaire, J.J. (2018). Deep Learning with R. Manning.

Cook, R.D., & Weisberg, S. (1982). Residuals and Influence in Regression. Chapman and Hall.

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J. (2009). Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems, 47(4), 547-553.

Costello, A.B., Osborne, J. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research, and Evaluation, 10(1), 7.

Cox, D. R. (1972). Regression models and life‐tables. Journal of the Royal Statistical Society: Series B (Methodological), 34(2), 187-202.

Davison, A.C., Hinkley, D.V. (1997). Bootstrap Methods and their Application. Cambridge University Press.

Eck, K., Hultman, L. (2007). One-sided violence against civilians in war: Insights from new fatality data. Journal of Peace Research, 44(2), 233-246.

Eddelbuettel, D., Balamuta, J.J. (2018). Extending R with C++: a brief introduction to Rcpp. The American Statistician, 72(1), 28-36.

Efron, B. (1983). Estimating the error rate of a prediction rule: improvement on cross-validation. Journal of the American Statistical Association, 78(382), 316-331.

Elston, D.A., Moss, R., Boulinier, T., Arrowsmith, C., Lambin, X. (2001). Analysis of aggregation, a worked example: numbers of ticks on red grouse chicks. Parasitology, 122(05), 563-569.

Friedman, J.H. (2002). Stochastic Gradient Boosting, Computational Statistics and Data Analysis, 38(4), 367-378.

Groll, A., Tutz, G. (2014). Variable selection for generalized linear mixed models by L1-penalized estimation. Statistics and Computing, 24(2), 137-154.

Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer Science & Business Media.

Hartigan, J.A., Wong, M.A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(1), 100-108.

Henderson, H.V., Velleman, P.F. (1981). Building multiple regression models interactively. Biometrics, 37, 391–411.

Herr, D.G. (1986). On the history of ANOVA in unbalanced, factorial designs: the first 30 years. The American Statistician, 40(4), 265-270.

Hoerl, A.E., Kennard, R.W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67.

Kuznetsova, A., Brockhoff, P. B., Christensen, R. H. (2017). lmerTest package: tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1-26.

Liero, H., Zwanzig, S. (2012). Introduction to the Theory of Statistical Inference. CRC Press.

Moen, A., Lind, A.L., Thulin, M., Kamali–Moghaddamd, M., Roe, C., Gjerstad, J., Gordh, T. (2016). Inflammatory serum protein profiling of patients with lumbar radicular pain one year after disc herniation. International Journal of Inflammation, 2016, Article ID 3874964.

Petterson, T., Högbladh, S., Öberg, M. (2019). Organized violence, 1989-2018 and peace agreements. Journal of Peace Research, 56(4), 589-603.

Picard, R.R., Cook, R.D. (1984). Cross-validation of regression models. Journal of the American Statistical Association, 79(387), 575–583.

Recht, B., Roelofs, R., Schmidt, L., Shankar, V. (2019). Do imagenet classifiers generalize to imagenet?. arXiv preprint arXiv:1902.10811.

Schoenfeld, D. (1982). Partial residuals for the proportional hazards regression model. Biometrika, 69(1), 239-241.

Scrucca, L., Fop, M., Murphy, T.B., Raftery, A.E. (2016). mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8(1), 289.

Smith, G. (2018). Step away from stepwise. Journal of Big Data, 5(1), 32.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288.

Tibshirani, R., Walther, G., Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 411-423.

Thulin, M. (2014a). The cost of using exact confidence intervals for a binomial proportion. Electronic Journal of Statistics, 8, 817-840.

Thulin, M. (2014b). On Confidence Intervals and Two-Sided Hypothesis Testing. PhD thesis. Department of Mathematics, Uppsala University.

Thulin, M. (2014c). Decision-theoretic justifications for Bayesian hypothesis testing using credible sets. Journal of Statistical Planning and Inference, 146, 133-138.

Thulin, M. (2016). Two‐sample tests and one‐way MANOVA for multivariate biomarker data with nondetects. Statistics in Medicine, 35(20), 3623-3644.

Thulin, M., Zwanzig, S. (2017). Exact confidence intervals and hypothesis tests for parameters of discrete distributions. Bernoulli, 23(1), 479-502.

Tobin, J. (1958). Estimation of relationships for limited dependent variables. Econometrica, 26, 24-36.

Wasserstein, R.L., Lazar, N.A. (2016). The ASA statement on p-values: context, process, and purpose. The American Statistician, 70(2), 129-133.

Wei, L.J. (1992). The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. Statistics in Medicine, 11(14‐15), 1871-1879.

Zhang, D., Fan, C., Zhang, J., Zhang, C.-H. (2009). Nonparametric methods for measurements below detection limit. Statistics in Medicine, 28, 700–715.

Zhang, Y., Yang, Y. (2015). Cross-validation for selecting a model selection procedure. Journal of Econometrics, 187(1), 95-112.

Zou, H., Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Methodological), 67(2), 301-320.